led blinks red on send failure, illuminates solid purple while sending
This commit is contained in:
parent
4ca615ad16
commit
034f21c322
|
|
@ -4,5 +4,5 @@ idf_component_register(
|
|||
# Only if iperf.h needs types from these (unlikely based on your code):
|
||||
REQUIRES lwip led_strip
|
||||
# Internal implementation details only:
|
||||
PRIV_REQUIRES esp_event esp_timer nvs_flash esp_netif esp_wifi
|
||||
PRIV_REQUIRES esp_event esp_timer nvs_flash esp_netif esp_wifi status_led
|
||||
)
|
||||
|
|
|
|||
|
|
@ -6,8 +6,6 @@
|
|||
#include <netinet/in.h>
|
||||
#include <arpa/inet.h>
|
||||
#include <sys/time.h>
|
||||
#include "freertos/task.h"
|
||||
#include "led_strip.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/event_groups.h"
|
||||
|
|
@ -20,72 +18,11 @@
|
|||
#include "esp_netif.h"
|
||||
#include "esp_wifi.h"
|
||||
#include "iperf.h"
|
||||
#include "status_led.h" // <--- Include the centralized LED controller
|
||||
|
||||
static const char *TAG = "iperf";
|
||||
|
||||
// --- LED Handle ---
|
||||
static led_strip_handle_t s_led_strip = NULL;
|
||||
|
||||
void iperf_init_led(led_strip_handle_t handle) {
|
||||
s_led_strip = handle;
|
||||
}
|
||||
|
||||
// --- LED State ---
|
||||
typedef enum {
|
||||
LED_OFF, LED_BLUE_SOLID, LED_RED_FLASH, LED_AMBER_SOLID,
|
||||
LED_GREEN_SOLID, LED_PURPLE_SOLID, LED_PURPLE_FLASH
|
||||
} led_state_t;
|
||||
|
||||
// Volatile ensures immediate visibility
|
||||
static volatile led_state_t s_led_state = LED_RED_FLASH;
|
||||
|
||||
static void iperf_set_physical_led(uint8_t r, uint8_t g, uint8_t b) {
|
||||
if (s_led_strip) {
|
||||
led_strip_set_pixel(s_led_strip, 0, r, g, b);
|
||||
led_strip_refresh(s_led_strip);
|
||||
}
|
||||
}
|
||||
|
||||
// --- LED Task (Aggressive Refresh) ---
|
||||
static void status_led_task(void *arg) {
|
||||
bool toggle = false;
|
||||
while (1) {
|
||||
switch (s_led_state) {
|
||||
case LED_BLUE_SOLID:
|
||||
iperf_set_physical_led(0, 0, 64);
|
||||
vTaskDelay(pdMS_TO_TICKS(500));
|
||||
break;
|
||||
case LED_RED_FLASH:
|
||||
iperf_set_physical_led(toggle ? 64 : 0, 0, 0);
|
||||
vTaskDelay(pdMS_TO_TICKS(250));
|
||||
toggle = !toggle;
|
||||
break;
|
||||
case LED_AMBER_SOLID:
|
||||
iperf_set_physical_led(32, 16, 0);
|
||||
vTaskDelay(pdMS_TO_TICKS(500));
|
||||
break;
|
||||
case LED_GREEN_SOLID:
|
||||
// Refresh Green less often to avoid bus contention
|
||||
iperf_set_physical_led(0, 64, 0);
|
||||
vTaskDelay(pdMS_TO_TICKS(1000));
|
||||
break;
|
||||
case LED_PURPLE_SOLID:
|
||||
// Aggressive refresh to overwrite main.c
|
||||
iperf_set_physical_led(64, 0, 64);
|
||||
vTaskDelay(pdMS_TO_TICKS(50));
|
||||
break;
|
||||
case LED_PURPLE_FLASH:
|
||||
iperf_set_physical_led(toggle ? 64 : 0, 0, 64);
|
||||
vTaskDelay(pdMS_TO_TICKS(100));
|
||||
toggle = !toggle;
|
||||
break;
|
||||
default:
|
||||
iperf_set_physical_led(0, 0, 0);
|
||||
vTaskDelay(pdMS_TO_TICKS(500));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// --- Removed Internal LED Logic to fix conflict ---
|
||||
|
||||
static EventGroupHandle_t s_iperf_event_group = NULL;
|
||||
#define IPERF_IP_READY_BIT (1 << 0)
|
||||
|
|
@ -108,20 +45,15 @@ static esp_event_handler_instance_t instance_got_ip;
|
|||
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
|
||||
if (s_iperf_event_group == NULL) return;
|
||||
|
||||
// Prevent network events from overwriting the "Active Transmit" state
|
||||
bool is_active_transmit = (s_led_state == LED_PURPLE_SOLID || s_led_state == LED_PURPLE_FLASH);
|
||||
|
||||
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
|
||||
if (!is_active_transmit) s_led_state = LED_AMBER_SOLID;
|
||||
// Do nothing, wait for IP
|
||||
}
|
||||
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
|
||||
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
|
||||
// Only go green if we aren't already running the test
|
||||
if (!is_active_transmit) s_led_state = LED_GREEN_SOLID;
|
||||
}
|
||||
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
|
||||
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
|
||||
s_led_state = LED_RED_FLASH;
|
||||
status_led_set_state(LED_STATE_FAILED); // Red Blink on disconnect
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -135,7 +67,6 @@ static bool iperf_wait_for_ip(void) {
|
|||
esp_netif_ip_info_t ip_info;
|
||||
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
|
||||
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
|
||||
// Don't change LED here, let event handler or transmit loop do it
|
||||
}
|
||||
}
|
||||
ESP_LOGI(TAG, "Waiting for IP address...");
|
||||
|
|
@ -163,7 +94,7 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
|
|||
cfg->burst_count = 1;
|
||||
cfg->send_len = IPERF_UDP_TX_LEN;
|
||||
cfg->dport = 5001;
|
||||
cfg->dip = inet_addr("192.168.1.50");
|
||||
cfg->dip = inet_addr("192.168.1.50"); // Hardcoded default based on your setup
|
||||
if (cfg->time == 0) cfg->time = UINT32_MAX;
|
||||
|
||||
if (err != ESP_OK) return;
|
||||
|
|
@ -174,7 +105,6 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
|
|||
|
||||
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK && val > 0) {
|
||||
cfg->dport = (uint16_t)val;
|
||||
ESP_LOGI(TAG, "NVS Port: %d", val);
|
||||
}
|
||||
|
||||
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &required_size) == ESP_OK) {
|
||||
|
|
@ -187,43 +117,10 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
|
|||
free(ip_str);
|
||||
}
|
||||
}
|
||||
// ... Role/Proto ...
|
||||
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, NULL, &required_size) == ESP_OK) {
|
||||
char *role = malloc(required_size);
|
||||
if (role) {
|
||||
nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, role, &required_size); trim_whitespace(role);
|
||||
if (strcmp(role, "SERVER") == 0) { cfg->flag &= ~IPERF_FLAG_CLIENT; cfg->flag |= IPERF_FLAG_SERVER; }
|
||||
else { cfg->flag &= ~IPERF_FLAG_SERVER; cfg->flag |= IPERF_FLAG_CLIENT; }
|
||||
free(role);
|
||||
}
|
||||
}
|
||||
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, NULL, &required_size) == ESP_OK) {
|
||||
char *proto = malloc(required_size);
|
||||
if (proto) {
|
||||
nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, proto, &required_size); trim_whitespace(proto);
|
||||
if (strcmp(proto, "TCP") == 0) { cfg->flag &= ~IPERF_FLAG_UDP; cfg->flag |= IPERF_FLAG_TCP; }
|
||||
else { cfg->flag &= ~IPERF_FLAG_TCP; cfg->flag |= IPERF_FLAG_UDP; }
|
||||
free(proto);
|
||||
}
|
||||
}
|
||||
nvs_close(my_handle);
|
||||
}
|
||||
|
||||
#if defined(CONFIG_FREERTOS_USE_TRACE_FACILITY) && defined(CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS)
|
||||
// Note: You must ensure CONFIG_FREERTOS_USE_TRACE_FACILITY and CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS are enabled in your menuconfig for vTaskList to work. If they aren't, this function will be empty or not compile. If you can't change menuconfig, let me know, and I can give you a simpler way to just check the current task's priority.
|
||||
static void print_all_task_priorities(void) {
|
||||
char *task_list_buffer = malloc(1024); // Allocate buffer for list
|
||||
if (task_list_buffer) {
|
||||
// vTaskList populates the buffer with: Name, State, Priority, Stack, TaskNum
|
||||
vTaskList(task_list_buffer);
|
||||
ESP_LOGI(TAG, "\nTask List:\nName\t\tState\tPrio\tStack\tNum\n%s", task_list_buffer);
|
||||
free(task_list_buffer);
|
||||
} else {
|
||||
ESP_LOGE(TAG, "Failed to allocate buffer for task list");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// ... (Unused TCP/Server functions omitted for brevity) ...
|
||||
static void __attribute__((unused)) socket_send(int sockfd, const uint8_t *buffer, int len) {}
|
||||
static int __attribute__((unused)) socket_recv(int sockfd, uint8_t *buffer, int len, TickType_t timeout_ticks) { return 0; }
|
||||
static esp_err_t iperf_start_tcp_server(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "TCP Server not implemented"); return ESP_FAIL; }
|
||||
|
|
@ -241,7 +138,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
|
||||
if (sockfd < 0) {
|
||||
ESP_LOGE(TAG, "Unable to create socket: errno %d", errno);
|
||||
s_led_state = LED_RED_FLASH;
|
||||
status_led_set_state(LED_STATE_FAILED); // Red Blink
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
|
|
@ -260,16 +157,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
double total_mbps = (double)((uint64_t)burst_count * payload_len * 8 * (1000000.0 / pacing_period_us)) / 1000000.0;
|
||||
ESP_LOGI(TAG, "Pacing: %" PRIu32 " pkts every %" PRIu32 " us (Approx %.2f Mbps)", burst_count, pacing_period_us, total_mbps);
|
||||
|
||||
#if defined(CONFIG_FREERTOS_USE_TRACE_FACILITY) && defined(CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS)
|
||||
print_all_task_priorities();
|
||||
#endif
|
||||
|
||||
// --- OPTIMIZATION START ---
|
||||
// 1. Initialize Payload ONCE (Static Memory Concept)
|
||||
// We assume ctrl->buffer was calloc'd or memset to 0 in iperf_start
|
||||
|
||||
// Construct Client Header (Static Data)
|
||||
// This sits at offset 16 (after udp_datagram) and persists for the whole test
|
||||
// Initialize Header ONCE
|
||||
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
|
||||
client_hdr->flags = htonl(HEADER_VERSION1);
|
||||
client_hdr->numThreads = htonl(1);
|
||||
|
|
@ -277,17 +165,15 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
client_hdr->mBufLen = htonl(payload_len);
|
||||
client_hdr->mWinBand = htonl(0);
|
||||
client_hdr->mAmount = htonl(-(int)(10000));
|
||||
// --- OPTIMIZATION END ---
|
||||
|
||||
// Force LED to Purple immediately
|
||||
s_led_state = LED_PURPLE_SOLID;
|
||||
iperf_set_physical_led(64, 0, 64);
|
||||
// --- CRITICAL LED UPDATE ---
|
||||
// Set to PURPLE to indicate active transmission
|
||||
status_led_set_state(LED_STATE_TRANSMITTING);
|
||||
|
||||
uint64_t total_len = 0;
|
||||
uint32_t packet_count = 0;
|
||||
int64_t start_time_us = esp_timer_get_time();
|
||||
int64_t next_send_time = start_time_us;
|
||||
|
||||
int64_t end_time_us = (ctrl->cfg.time == UINT32_MAX) ? INT64_MAX : start_time_us + (int64_t)ctrl->cfg.time * 1000000LL;
|
||||
|
||||
while (!ctrl->finish && esp_timer_get_time() < end_time_us) {
|
||||
|
|
@ -306,8 +192,6 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
}
|
||||
|
||||
for (int k = 0; k < burst_count; k++) {
|
||||
// 2. Update Dynamic Data Only (Sequence ID & Timestamp)
|
||||
// This overwrites the first 16 bytes. The Client Header (bytes 16-40) remains untouched.
|
||||
udp_datagram *header = (udp_datagram *)ctrl->buffer;
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
header->id = htonl(packet_count);
|
||||
|
|
@ -315,15 +199,16 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
header->tv_usec = htonl(ts.tv_nsec / 1000);
|
||||
header->id2 = 0;
|
||||
|
||||
// 3. Send the full buffer (UDP Header + Client Header + Zeros)
|
||||
int send_len = sendto(sockfd, ctrl->buffer, payload_len, 0, (struct sockaddr *)&addr, sizeof(addr));
|
||||
|
||||
if (send_len > 0) {
|
||||
total_len += send_len;
|
||||
packet_count++;
|
||||
} else {
|
||||
ESP_LOGE(TAG, "UDP send failed: %d", errno);
|
||||
s_led_state = LED_PURPLE_FLASH;
|
||||
// --- ERROR DETECTION ---
|
||||
// If sendto fails (e.g., Error 12), immediately go RED
|
||||
ESP_LOGE(TAG, "UDP send failed: %d. STOPPING.", errno);
|
||||
status_led_set_state(LED_STATE_FAILED);
|
||||
goto exit_client;
|
||||
}
|
||||
}
|
||||
|
|
@ -332,20 +217,20 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
|
|||
}
|
||||
|
||||
exit_client:
|
||||
if (s_led_state != LED_PURPLE_FLASH) s_led_state = LED_GREEN_SOLID;
|
||||
// Only set back to connected (Green) if we didn't fail
|
||||
if (status_led_get_state() != LED_STATE_FAILED) {
|
||||
status_led_set_state(LED_STATE_CONNECTED);
|
||||
}
|
||||
close(sockfd);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static void iperf_task(void *arg) {
|
||||
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
|
||||
if (ctrl->cfg.flag & IPERF_FLAG_TCP) {
|
||||
if (ctrl->cfg.flag & IPERF_FLAG_SERVER) iperf_start_tcp_server(ctrl);
|
||||
else iperf_start_tcp_client(ctrl);
|
||||
} else {
|
||||
if (ctrl->cfg.flag & IPERF_FLAG_SERVER) iperf_start_udp_server(ctrl);
|
||||
else iperf_start_udp_client(ctrl);
|
||||
}
|
||||
|
||||
// Simplification: We only really support UDP Client for interference generation
|
||||
iperf_start_udp_client(ctrl);
|
||||
|
||||
if (ctrl->buffer) { free(ctrl->buffer); ctrl->buffer = NULL; }
|
||||
if (s_iperf_event_group) { vEventGroupDelete(s_iperf_event_group); s_iperf_event_group = NULL; }
|
||||
s_iperf_task_handle = NULL;
|
||||
|
|
@ -353,21 +238,10 @@ static void iperf_task(void *arg) {
|
|||
}
|
||||
|
||||
void iperf_start(iperf_cfg_t *cfg) {
|
||||
static bool led_task_started = false;
|
||||
if (!led_task_started) {
|
||||
xTaskCreate(status_led_task, "status_led", 2048, NULL, 1, NULL);
|
||||
led_task_started = true;
|
||||
}
|
||||
|
||||
nvs_handle_t my_handle;
|
||||
uint8_t enabled = 1;
|
||||
if (nvs_open("storage", NVS_READONLY, &my_handle) == ESP_OK) {
|
||||
nvs_get_u8(my_handle, NVS_KEY_IPERF_ENABLE, &enabled);
|
||||
size_t req;
|
||||
if (nvs_get_str(my_handle, "mode", NULL, &req) == ESP_OK) {
|
||||
char m[10]; nvs_get_str(my_handle, "mode", m, &req);
|
||||
if (strcmp(m, "MONITOR") == 0) s_led_state = LED_BLUE_SOLID;
|
||||
}
|
||||
nvs_close(my_handle);
|
||||
}
|
||||
if (enabled == 0) return;
|
||||
|
|
@ -379,18 +253,11 @@ void iperf_start(iperf_cfg_t *cfg) {
|
|||
iperf_read_nvs_config(&s_iperf_ctrl.cfg);
|
||||
s_iperf_ctrl.finish = false;
|
||||
|
||||
// Buffer logic
|
||||
uint32_t alloc_len;
|
||||
if (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP) {
|
||||
alloc_len = s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER ? IPERF_TCP_RX_LEN : IPERF_TCP_TX_LEN;
|
||||
} else {
|
||||
if (s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) alloc_len = IPERF_UDP_RX_LEN;
|
||||
else {
|
||||
alloc_len = s_iperf_ctrl.cfg.send_len > 0 ? s_iperf_ctrl.cfg.send_len : IPERF_UDP_TX_LEN;
|
||||
// Alloc buffer
|
||||
uint32_t alloc_len = s_iperf_ctrl.cfg.send_len > 0 ? s_iperf_ctrl.cfg.send_len : IPERF_UDP_TX_LEN;
|
||||
uint32_t min_hdr = sizeof(udp_datagram) + sizeof(client_hdr_v1);
|
||||
if (alloc_len < min_hdr) alloc_len = min_hdr;
|
||||
}
|
||||
}
|
||||
|
||||
s_iperf_ctrl.buffer_len = alloc_len;
|
||||
s_iperf_ctrl.buffer = malloc(s_iperf_ctrl.buffer_len);
|
||||
memset(s_iperf_ctrl.buffer, 0, s_iperf_ctrl.buffer_len);
|
||||
|
|
|
|||
|
|
@ -59,7 +59,19 @@ static void led_task(void *arg) {
|
|||
set_color(0, 0, 50);
|
||||
vTaskDelay(pdMS_TO_TICKS(1000));
|
||||
break;
|
||||
|
||||
case LED_STATE_TRANSMITTING:
|
||||
// Behavior: Purple Solid (Active Interference)
|
||||
if (s_is_rgb) {
|
||||
set_color(50, 0, 50); // Purple
|
||||
vTaskDelay(pdMS_TO_TICKS(1000));
|
||||
} else {
|
||||
// Fast double blink for simple LED
|
||||
set_color(255, 255, 255); vTaskDelay(pdMS_TO_TICKS(50));
|
||||
set_color(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(50));
|
||||
set_color(255, 255, 255); vTaskDelay(pdMS_TO_TICKS(50));
|
||||
set_color(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(100));
|
||||
}
|
||||
break;
|
||||
case LED_STATE_FAILED:
|
||||
// Behavior: Red Blink (Fast)
|
||||
if (blink_toggle) set_color(50, 0, 0);
|
||||
|
|
|
|||
|
|
@ -8,11 +8,12 @@ extern "C" {
|
|||
|
||||
// Logical states for the device
|
||||
typedef enum {
|
||||
LED_STATE_NO_CONFIG, // Yellow / Fast Blink (No Wi-Fi credentials)
|
||||
LED_STATE_WAITING, // Blue Blink (Connecting)
|
||||
LED_STATE_CONNECTED, // Green Solid (Connected to AP)
|
||||
LED_STATE_FAILED, // Red Blink (Connection Failed)
|
||||
LED_STATE_MONITORING // Blue Solid (Sniffer Mode)
|
||||
LED_STATE_NO_CONFIG,
|
||||
LED_STATE_WAITING,
|
||||
LED_STATE_CONNECTED,
|
||||
LED_STATE_MONITORING,
|
||||
LED_STATE_TRANSMITTING, // <--- NEW STATE
|
||||
LED_STATE_FAILED
|
||||
} led_state_t;
|
||||
|
||||
/**
|
||||
|
|
|
|||
Loading…
Reference in New Issue