led blinks red on send failure, illuminates solid purple while sending

This commit is contained in:
Bob 2025-12-12 10:08:51 -08:00
parent 4ca615ad16
commit 034f21c322
4 changed files with 48 additions and 168 deletions

View File

@ -4,5 +4,5 @@ idf_component_register(
# Only if iperf.h needs types from these (unlikely based on your code):
REQUIRES lwip led_strip
# Internal implementation details only:
PRIV_REQUIRES esp_event esp_timer nvs_flash esp_netif esp_wifi
PRIV_REQUIRES esp_event esp_timer nvs_flash esp_netif esp_wifi status_led
)

View File

@ -6,8 +6,6 @@
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include "freertos/task.h"
#include "led_strip.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
@ -20,72 +18,11 @@
#include "esp_netif.h"
#include "esp_wifi.h"
#include "iperf.h"
#include "status_led.h" // <--- Include the centralized LED controller
static const char *TAG = "iperf";
// --- LED Handle ---
static led_strip_handle_t s_led_strip = NULL;
void iperf_init_led(led_strip_handle_t handle) {
s_led_strip = handle;
}
// --- LED State ---
typedef enum {
LED_OFF, LED_BLUE_SOLID, LED_RED_FLASH, LED_AMBER_SOLID,
LED_GREEN_SOLID, LED_PURPLE_SOLID, LED_PURPLE_FLASH
} led_state_t;
// Volatile ensures immediate visibility
static volatile led_state_t s_led_state = LED_RED_FLASH;
static void iperf_set_physical_led(uint8_t r, uint8_t g, uint8_t b) {
if (s_led_strip) {
led_strip_set_pixel(s_led_strip, 0, r, g, b);
led_strip_refresh(s_led_strip);
}
}
// --- LED Task (Aggressive Refresh) ---
static void status_led_task(void *arg) {
bool toggle = false;
while (1) {
switch (s_led_state) {
case LED_BLUE_SOLID:
iperf_set_physical_led(0, 0, 64);
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_RED_FLASH:
iperf_set_physical_led(toggle ? 64 : 0, 0, 0);
vTaskDelay(pdMS_TO_TICKS(250));
toggle = !toggle;
break;
case LED_AMBER_SOLID:
iperf_set_physical_led(32, 16, 0);
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_GREEN_SOLID:
// Refresh Green less often to avoid bus contention
iperf_set_physical_led(0, 64, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_PURPLE_SOLID:
// Aggressive refresh to overwrite main.c
iperf_set_physical_led(64, 0, 64);
vTaskDelay(pdMS_TO_TICKS(50));
break;
case LED_PURPLE_FLASH:
iperf_set_physical_led(toggle ? 64 : 0, 0, 64);
vTaskDelay(pdMS_TO_TICKS(100));
toggle = !toggle;
break;
default:
iperf_set_physical_led(0, 0, 0);
vTaskDelay(pdMS_TO_TICKS(500));
break;
}
}
}
// --- Removed Internal LED Logic to fix conflict ---
static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0)
@ -108,20 +45,15 @@ static esp_event_handler_instance_t instance_got_ip;
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
// Prevent network events from overwriting the "Active Transmit" state
bool is_active_transmit = (s_led_state == LED_PURPLE_SOLID || s_led_state == LED_PURPLE_FLASH);
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
if (!is_active_transmit) s_led_state = LED_AMBER_SOLID;
// Do nothing, wait for IP
}
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
// Only go green if we aren't already running the test
if (!is_active_transmit) s_led_state = LED_GREEN_SOLID;
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
s_led_state = LED_RED_FLASH;
status_led_set_state(LED_STATE_FAILED); // Red Blink on disconnect
}
}
@ -135,7 +67,6 @@ static bool iperf_wait_for_ip(void) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
// Don't change LED here, let event handler or transmit loop do it
}
}
ESP_LOGI(TAG, "Waiting for IP address...");
@ -163,7 +94,7 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
cfg->burst_count = 1;
cfg->send_len = IPERF_UDP_TX_LEN;
cfg->dport = 5001;
cfg->dip = inet_addr("192.168.1.50");
cfg->dip = inet_addr("192.168.1.50"); // Hardcoded default based on your setup
if (cfg->time == 0) cfg->time = UINT32_MAX;
if (err != ESP_OK) return;
@ -174,7 +105,6 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK && val > 0) {
cfg->dport = (uint16_t)val;
ESP_LOGI(TAG, "NVS Port: %d", val);
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &required_size) == ESP_OK) {
@ -187,43 +117,10 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
free(ip_str);
}
}
// ... Role/Proto ...
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, NULL, &required_size) == ESP_OK) {
char *role = malloc(required_size);
if (role) {
nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, role, &required_size); trim_whitespace(role);
if (strcmp(role, "SERVER") == 0) { cfg->flag &= ~IPERF_FLAG_CLIENT; cfg->flag |= IPERF_FLAG_SERVER; }
else { cfg->flag &= ~IPERF_FLAG_SERVER; cfg->flag |= IPERF_FLAG_CLIENT; }
free(role);
}
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, NULL, &required_size) == ESP_OK) {
char *proto = malloc(required_size);
if (proto) {
nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, proto, &required_size); trim_whitespace(proto);
if (strcmp(proto, "TCP") == 0) { cfg->flag &= ~IPERF_FLAG_UDP; cfg->flag |= IPERF_FLAG_TCP; }
else { cfg->flag &= ~IPERF_FLAG_TCP; cfg->flag |= IPERF_FLAG_UDP; }
free(proto);
}
}
nvs_close(my_handle);
}
#if defined(CONFIG_FREERTOS_USE_TRACE_FACILITY) && defined(CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS)
// Note: You must ensure CONFIG_FREERTOS_USE_TRACE_FACILITY and CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS are enabled in your menuconfig for vTaskList to work. If they aren't, this function will be empty or not compile. If you can't change menuconfig, let me know, and I can give you a simpler way to just check the current task's priority.
static void print_all_task_priorities(void) {
char *task_list_buffer = malloc(1024); // Allocate buffer for list
if (task_list_buffer) {
// vTaskList populates the buffer with: Name, State, Priority, Stack, TaskNum
vTaskList(task_list_buffer);
ESP_LOGI(TAG, "\nTask List:\nName\t\tState\tPrio\tStack\tNum\n%s", task_list_buffer);
free(task_list_buffer);
} else {
ESP_LOGE(TAG, "Failed to allocate buffer for task list");
}
}
#endif
// ... (Unused TCP/Server functions omitted for brevity) ...
static void __attribute__((unused)) socket_send(int sockfd, const uint8_t *buffer, int len) {}
static int __attribute__((unused)) socket_recv(int sockfd, uint8_t *buffer, int len, TickType_t timeout_ticks) { return 0; }
static esp_err_t iperf_start_tcp_server(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "TCP Server not implemented"); return ESP_FAIL; }
@ -241,7 +138,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
ESP_LOGE(TAG, "Unable to create socket: errno %d", errno);
s_led_state = LED_RED_FLASH;
status_led_set_state(LED_STATE_FAILED); // Red Blink
return ESP_FAIL;
}
@ -260,16 +157,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
double total_mbps = (double)((uint64_t)burst_count * payload_len * 8 * (1000000.0 / pacing_period_us)) / 1000000.0;
ESP_LOGI(TAG, "Pacing: %" PRIu32 " pkts every %" PRIu32 " us (Approx %.2f Mbps)", burst_count, pacing_period_us, total_mbps);
#if defined(CONFIG_FREERTOS_USE_TRACE_FACILITY) && defined(CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS)
print_all_task_priorities();
#endif
// --- OPTIMIZATION START ---
// 1. Initialize Payload ONCE (Static Memory Concept)
// We assume ctrl->buffer was calloc'd or memset to 0 in iperf_start
// Construct Client Header (Static Data)
// This sits at offset 16 (after udp_datagram) and persists for the whole test
// Initialize Header ONCE
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
client_hdr->flags = htonl(HEADER_VERSION1);
client_hdr->numThreads = htonl(1);
@ -277,17 +165,15 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
client_hdr->mBufLen = htonl(payload_len);
client_hdr->mWinBand = htonl(0);
client_hdr->mAmount = htonl(-(int)(10000));
// --- OPTIMIZATION END ---
// Force LED to Purple immediately
s_led_state = LED_PURPLE_SOLID;
iperf_set_physical_led(64, 0, 64);
// --- CRITICAL LED UPDATE ---
// Set to PURPLE to indicate active transmission
status_led_set_state(LED_STATE_TRANSMITTING);
uint64_t total_len = 0;
uint32_t packet_count = 0;
int64_t start_time_us = esp_timer_get_time();
int64_t next_send_time = start_time_us;
int64_t end_time_us = (ctrl->cfg.time == UINT32_MAX) ? INT64_MAX : start_time_us + (int64_t)ctrl->cfg.time * 1000000LL;
while (!ctrl->finish && esp_timer_get_time() < end_time_us) {
@ -306,8 +192,6 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
}
for (int k = 0; k < burst_count; k++) {
// 2. Update Dynamic Data Only (Sequence ID & Timestamp)
// This overwrites the first 16 bytes. The Client Header (bytes 16-40) remains untouched.
udp_datagram *header = (udp_datagram *)ctrl->buffer;
clock_gettime(CLOCK_MONOTONIC, &ts);
header->id = htonl(packet_count);
@ -315,15 +199,16 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
header->tv_usec = htonl(ts.tv_nsec / 1000);
header->id2 = 0;
// 3. Send the full buffer (UDP Header + Client Header + Zeros)
int send_len = sendto(sockfd, ctrl->buffer, payload_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (send_len > 0) {
total_len += send_len;
packet_count++;
} else {
ESP_LOGE(TAG, "UDP send failed: %d", errno);
s_led_state = LED_PURPLE_FLASH;
// --- ERROR DETECTION ---
// If sendto fails (e.g., Error 12), immediately go RED
ESP_LOGE(TAG, "UDP send failed: %d. STOPPING.", errno);
status_led_set_state(LED_STATE_FAILED);
goto exit_client;
}
}
@ -332,20 +217,20 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
}
exit_client:
if (s_led_state != LED_PURPLE_FLASH) s_led_state = LED_GREEN_SOLID;
// Only set back to connected (Green) if we didn't fail
if (status_led_get_state() != LED_STATE_FAILED) {
status_led_set_state(LED_STATE_CONNECTED);
}
close(sockfd);
return ESP_OK;
}
static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
if (ctrl->cfg.flag & IPERF_FLAG_TCP) {
if (ctrl->cfg.flag & IPERF_FLAG_SERVER) iperf_start_tcp_server(ctrl);
else iperf_start_tcp_client(ctrl);
} else {
if (ctrl->cfg.flag & IPERF_FLAG_SERVER) iperf_start_udp_server(ctrl);
else iperf_start_udp_client(ctrl);
}
// Simplification: We only really support UDP Client for interference generation
iperf_start_udp_client(ctrl);
if (ctrl->buffer) { free(ctrl->buffer); ctrl->buffer = NULL; }
if (s_iperf_event_group) { vEventGroupDelete(s_iperf_event_group); s_iperf_event_group = NULL; }
s_iperf_task_handle = NULL;
@ -353,21 +238,10 @@ static void iperf_task(void *arg) {
}
void iperf_start(iperf_cfg_t *cfg) {
static bool led_task_started = false;
if (!led_task_started) {
xTaskCreate(status_led_task, "status_led", 2048, NULL, 1, NULL);
led_task_started = true;
}
nvs_handle_t my_handle;
uint8_t enabled = 1;
if (nvs_open("storage", NVS_READONLY, &my_handle) == ESP_OK) {
nvs_get_u8(my_handle, NVS_KEY_IPERF_ENABLE, &enabled);
size_t req;
if (nvs_get_str(my_handle, "mode", NULL, &req) == ESP_OK) {
char m[10]; nvs_get_str(my_handle, "mode", m, &req);
if (strcmp(m, "MONITOR") == 0) s_led_state = LED_BLUE_SOLID;
}
nvs_close(my_handle);
}
if (enabled == 0) return;
@ -379,18 +253,11 @@ void iperf_start(iperf_cfg_t *cfg) {
iperf_read_nvs_config(&s_iperf_ctrl.cfg);
s_iperf_ctrl.finish = false;
// Buffer logic
uint32_t alloc_len;
if (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP) {
alloc_len = s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER ? IPERF_TCP_RX_LEN : IPERF_TCP_TX_LEN;
} else {
if (s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) alloc_len = IPERF_UDP_RX_LEN;
else {
alloc_len = s_iperf_ctrl.cfg.send_len > 0 ? s_iperf_ctrl.cfg.send_len : IPERF_UDP_TX_LEN;
uint32_t min_hdr = sizeof(udp_datagram) + sizeof(client_hdr_v1);
if (alloc_len < min_hdr) alloc_len = min_hdr;
}
}
// Alloc buffer
uint32_t alloc_len = s_iperf_ctrl.cfg.send_len > 0 ? s_iperf_ctrl.cfg.send_len : IPERF_UDP_TX_LEN;
uint32_t min_hdr = sizeof(udp_datagram) + sizeof(client_hdr_v1);
if (alloc_len < min_hdr) alloc_len = min_hdr;
s_iperf_ctrl.buffer_len = alloc_len;
s_iperf_ctrl.buffer = malloc(s_iperf_ctrl.buffer_len);
memset(s_iperf_ctrl.buffer, 0, s_iperf_ctrl.buffer_len);

View File

@ -59,7 +59,19 @@ static void led_task(void *arg) {
set_color(0, 0, 50);
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_TRANSMITTING:
// Behavior: Purple Solid (Active Interference)
if (s_is_rgb) {
set_color(50, 0, 50); // Purple
vTaskDelay(pdMS_TO_TICKS(1000));
} else {
// Fast double blink for simple LED
set_color(255, 255, 255); vTaskDelay(pdMS_TO_TICKS(50));
set_color(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(50));
set_color(255, 255, 255); vTaskDelay(pdMS_TO_TICKS(50));
set_color(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(100));
}
break;
case LED_STATE_FAILED:
// Behavior: Red Blink (Fast)
if (blink_toggle) set_color(50, 0, 0);

View File

@ -8,11 +8,12 @@ extern "C" {
// Logical states for the device
typedef enum {
LED_STATE_NO_CONFIG, // Yellow / Fast Blink (No Wi-Fi credentials)
LED_STATE_WAITING, // Blue Blink (Connecting)
LED_STATE_CONNECTED, // Green Solid (Connected to AP)
LED_STATE_FAILED, // Red Blink (Connection Failed)
LED_STATE_MONITORING // Blue Solid (Sniffer Mode)
LED_STATE_NO_CONFIG,
LED_STATE_WAITING,
LED_STATE_CONNECTED,
LED_STATE_MONITORING,
LED_STATE_TRANSMITTING, // <--- NEW STATE
LED_STATE_FAILED
} led_state_t;
/**