working traffic - purple LED still not working

This commit is contained in:
Bob 2025-12-10 15:59:02 -08:00
parent 63cb997692
commit 1ea05536ab
1 changed files with 111 additions and 55 deletions

View File

@ -6,6 +6,8 @@
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include "freertos/task.h"
#include "led_strip.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
@ -21,11 +23,9 @@
static const char *TAG = "iperf";
// --- LED Handle (Private Static) ---
// This solves the linker error. We set this via iperf_init_led()
// --- LED Handle ---
static led_strip_handle_t s_led_strip = NULL;
// --- Init Function ---
void iperf_init_led(led_strip_handle_t handle) {
s_led_strip = handle;
}
@ -36,6 +36,7 @@ typedef enum {
LED_GREEN_SOLID, LED_PURPLE_SOLID, LED_PURPLE_FLASH
} led_state_t;
// Volatile ensures immediate visibility
static volatile led_state_t s_led_state = LED_RED_FLASH;
static void iperf_set_physical_led(uint8_t r, uint8_t g, uint8_t b) {
@ -45,17 +46,43 @@ static void iperf_set_physical_led(uint8_t r, uint8_t g, uint8_t b) {
}
}
// --- LED Task (Aggressive Refresh) ---
static void status_led_task(void *arg) {
bool toggle = false;
while (1) {
switch (s_led_state) {
case LED_BLUE_SOLID: iperf_set_physical_led(0, 0, 64); vTaskDelay(pdMS_TO_TICKS(500)); break;
case LED_RED_FLASH: iperf_set_physical_led(toggle ? 64 : 0, 0, 0); vTaskDelay(pdMS_TO_TICKS(250)); toggle = !toggle; break;
case LED_AMBER_SOLID: iperf_set_physical_led(32, 16, 0); vTaskDelay(pdMS_TO_TICKS(500)); break;
case LED_GREEN_SOLID: iperf_set_physical_led(0, 64, 0); vTaskDelay(pdMS_TO_TICKS(500)); break;
case LED_PURPLE_SOLID: iperf_set_physical_led(64, 0, 64); vTaskDelay(pdMS_TO_TICKS(200)); break;
case LED_PURPLE_FLASH: iperf_set_physical_led(toggle ? 64 : 0, 0, 64); vTaskDelay(pdMS_TO_TICKS(250)); toggle = !toggle; break;
default: iperf_set_physical_led(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(500)); break;
case LED_BLUE_SOLID:
iperf_set_physical_led(0, 0, 64);
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_RED_FLASH:
iperf_set_physical_led(toggle ? 64 : 0, 0, 0);
vTaskDelay(pdMS_TO_TICKS(250));
toggle = !toggle;
break;
case LED_AMBER_SOLID:
iperf_set_physical_led(32, 16, 0);
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_GREEN_SOLID:
// Refresh Green less often to avoid bus contention
iperf_set_physical_led(0, 64, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_PURPLE_SOLID:
// Aggressive refresh to overwrite main.c
iperf_set_physical_led(64, 0, 64);
vTaskDelay(pdMS_TO_TICKS(50));
break;
case LED_PURPLE_FLASH:
iperf_set_physical_led(toggle ? 64 : 0, 0, 64);
vTaskDelay(pdMS_TO_TICKS(100));
toggle = !toggle;
break;
default:
iperf_set_physical_led(0, 0, 0);
vTaskDelay(pdMS_TO_TICKS(500));
break;
}
}
}
@ -81,15 +108,16 @@ static esp_event_handler_instance_t instance_got_ip;
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
// Only update state if we are NOT currently running the test (Purple)
bool is_running = (s_led_state == LED_PURPLE_SOLID || s_led_state == LED_PURPLE_FLASH);
// Prevent network events from overwriting the "Active Transmit" state
bool is_active_transmit = (s_led_state == LED_PURPLE_SOLID || s_led_state == LED_PURPLE_FLASH);
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
if (!is_running) s_led_state = LED_AMBER_SOLID;
if (!is_active_transmit) s_led_state = LED_AMBER_SOLID;
}
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
if (!is_running) s_led_state = LED_GREEN_SOLID;
// Only go green if we aren't already running the test
if (!is_active_transmit) s_led_state = LED_GREEN_SOLID;
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
@ -107,7 +135,7 @@ static bool iperf_wait_for_ip(void) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
// Don't set Green here, let the loop handle the transition
// Don't change LED here, let event handler or transmit loop do it
}
}
ESP_LOGI(TAG, "Waiting for IP address...");
@ -159,12 +187,11 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
free(ip_str);
}
}
// ... Role/Proto ...
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, NULL, &required_size) == ESP_OK) {
char *role = malloc(required_size);
if (role) {
nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, role, &required_size); trim_whitespace(role);
ESP_LOGI(TAG, "NVS Role: '%s'", role);
if (strcmp(role, "SERVER") == 0) { cfg->flag &= ~IPERF_FLAG_CLIENT; cfg->flag |= IPERF_FLAG_SERVER; }
else { cfg->flag &= ~IPERF_FLAG_SERVER; cfg->flag |= IPERF_FLAG_CLIENT; }
free(role);
@ -174,7 +201,6 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
char *proto = malloc(required_size);
if (proto) {
nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, proto, &required_size); trim_whitespace(proto);
ESP_LOGI(TAG, "NVS Proto: '%s'", proto);
if (strcmp(proto, "TCP") == 0) { cfg->flag &= ~IPERF_FLAG_UDP; cfg->flag |= IPERF_FLAG_TCP; }
else { cfg->flag &= ~IPERF_FLAG_TCP; cfg->flag |= IPERF_FLAG_UDP; }
free(proto);
@ -183,6 +209,22 @@ static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_close(my_handle);
}
#if 0
static void print_all_task_priorities(void) {
char *task_list_buffer = malloc(1024); // Allocate buffer for list
if (task_list_buffer) {
// vTaskList populates the buffer with: Name, State, Priority, Stack, TaskNum
vTaskList(task_list_buffer);
ESP_LOGI(TAG, "\nTask List:\nName\t\tState\tPrio\tStack\tNum\n%s", task_list_buffer);
free(task_list_buffer);
} else {
ESP_LOGE(TAG, "Failed to allocate buffer for task list");
}
}
// Note: You must ensure CONFIG_FREERTOS_USE_TRACE_FACILITY and CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS are enabled in your menuconfig for vTaskList to work. If they aren't, this function will be empty or not compile. If you can't change menuconfig, let me know, and I can give you a simpler way to just check the current task's priority.
#endif
static void __attribute__((unused)) socket_send(int sockfd, const uint8_t *buffer, int len) {}
static int __attribute__((unused)) socket_recv(int sockfd, uint8_t *buffer, int len, TickType_t timeout_ticks) { return 0; }
static esp_err_t iperf_start_tcp_server(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "TCP Server not implemented"); return ESP_FAIL; }
@ -195,7 +237,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
struct sockaddr_in addr;
int sockfd;
struct timeval tv;
struct timespec ts;
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
@ -219,55 +261,69 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
double total_mbps = (double)((uint64_t)burst_count * payload_len * 8 * (1000000.0 / pacing_period_us)) / 1000000.0;
ESP_LOGI(TAG, "Pacing: %" PRIu32 " pkts every %" PRIu32 " us (Approx %.2f Mbps)", burst_count, pacing_period_us, total_mbps);
// --- FORCE PURPLE (TRANSMITTING) ---
#if 0
print_all_task_priorities();
#endif
// Force LED to Purple immediately
s_led_state = LED_PURPLE_SOLID;
iperf_set_physical_led(64, 0, 64); // Immediate feedback
iperf_set_physical_led(64, 0, 64);
uint64_t total_len = 0;
uint32_t packet_count = 0;
int64_t start_time_us = esp_timer_get_time();
int64_t next_send_time = start_time_us;
int64_t end_time_us = (ctrl->cfg.time == UINT32_MAX) ? INT64_MAX : start_time_us + (int64_t)ctrl->cfg.time * 1000000LL;
while (!ctrl->finish && esp_timer_get_time() < end_time_us) {
int64_t current_time = esp_timer_get_time();
int64_t time_to_wait = next_send_time - current_time;
if (current_time >= next_send_time) {
for (int k = 0; k < burst_count; k++) {
udp_datagram *header = (udp_datagram *)ctrl->buffer;
gettimeofday(&tv, NULL);
header->id = htonl(packet_count);
header->tv_sec = htonl(tv.tv_sec);
header->tv_usec = htonl(tv.tv_usec);
header->id2 = 0;
if (packet_count == 0) {
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
client_hdr->flags = htonl(HEADER_VERSION1);
client_hdr->numThreads = htonl(1);
client_hdr->mPort = htonl(ctrl->cfg.dport);
client_hdr->mBufLen = htonl(payload_len);
client_hdr->mWinBand = htonl(0);
client_hdr->mAmount = htonl(-(int)(10000));
}
int send_len = sendto(sockfd, ctrl->buffer, payload_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (send_len > 0) {
total_len += send_len;
packet_count++;
} else {
ESP_LOGE(TAG, "UDP send failed: %d", errno);
s_led_state = LED_PURPLE_FLASH;
goto exit_client;
if (time_to_wait > 0) {
// If the wait is long (> 2ms), sleep to save power and let lower priority tasks run
if (time_to_wait > 2000) {
vTaskDelay(pdMS_TO_TICKS(time_to_wait / 1000));
}
// If the wait is short, spin but yield to other ready tasks (like WiFi/TCP-IP)
else {
while (esp_timer_get_time() < next_send_time) {
taskYIELD();
}
}
next_send_time += pacing_period_us;
if (esp_timer_get_time() > next_send_time + 4000) next_send_time = esp_timer_get_time() + pacing_period_us;
} else {
int64_t wait = next_send_time - current_time;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait/1000));
}
for (int k = 0; k < burst_count; k++) {
udp_datagram *header = (udp_datagram *)ctrl->buffer;
clock_gettime(CLOCK_MONOTONIC, &ts);
header->id = htonl(packet_count);
header->tv_sec = htonl(ts.tv_sec);
header->tv_usec = htonl(ts.tv_nsec / 1000);
header->id2 = 0;
if (packet_count == 0) {
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
client_hdr->flags = htonl(HEADER_VERSION1);
client_hdr->numThreads = htonl(1);
client_hdr->mPort = htonl(ntohs(addr.sin_port));
client_hdr->mBufLen = htonl(payload_len);
client_hdr->mWinBand = htonl(0);
client_hdr->mAmount = htonl(-(int)(10000));
}
int send_len = sendto(sockfd, ctrl->buffer, payload_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (send_len > 0) {
total_len += send_len;
packet_count++;
} else {
ESP_LOGE(TAG, "UDP send failed: %d", errno);
s_led_state = LED_PURPLE_FLASH;
goto exit_client;
}
}
next_send_time += pacing_period_us;
if (esp_timer_get_time() > next_send_time + 4000) next_send_time = esp_timer_get_time() + pacing_period_us;
}
exit_client:
@ -309,7 +365,6 @@ void iperf_start(iperf_cfg_t *cfg) {
}
nvs_close(my_handle);
}
if (enabled == 0) return;
if (s_iperf_task_handle != NULL) return;
@ -319,6 +374,7 @@ void iperf_start(iperf_cfg_t *cfg) {
iperf_read_nvs_config(&s_iperf_ctrl.cfg);
s_iperf_ctrl.finish = false;
// Buffer logic
uint32_t alloc_len;
if (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP) {
alloc_len = s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER ? IPERF_TCP_RX_LEN : IPERF_TCP_TX_LEN;