diff --git a/doc/esp32-c5-gps-sync-guide.html b/doc/esp32-c5-gps-sync-guide.html new file mode 100644 index 0000000..7684e5e --- /dev/null +++ b/doc/esp32-c5-gps-sync-guide.html @@ -0,0 +1,924 @@ + + +
+ + +This guide demonstrates how to synchronize an ESP32-C5-DevKitC-1-N8R4 to GPS time using a GPS module with PPS (Pulse Per Second) output. This enables precise timestamp correlation between WiFi collapse detector events and iperf2 latency measurements running on a GPS-synced Raspberry Pi 5.
+ +
+ + Source: Espressif ESP32-C5 Documentation +
+| GT-U7 GPS Pin | +ESP32-C5 Pin | +Header Location | +GPIO Number | +
|---|---|---|---|
| VCC | +Pin 1 | +J1 (Left Side) | +3V3 (3.3V works perfect!) | +
| GND | +Pin 15 | +J1 (Left Side) | +GND | +
| TXD (NMEA Data) | +Pin 8 | +J3 (Right Side) | +GPIO4 (RX) | +
| PPS (Pulse/Second) | +Pin 6 | +J1 (Left Side) | +GPIO1 | +
| RXD (Optional) | +Pin 9 | +J3 (Right Side) | +GPIO5 (TX) | +
+GT-U7 GPS Module ESP32-C5-DevKitC-1 Board +---------------- ═══════════════════════════════════════ + + ┌─── J1 (LEFT) ──┐ ┌── J3 (RIGHT) ──┐ +VCC (3.3V-5V) ────────→ │ Pin 1: 3V3 │ │ │ + │ Pin 2: RST │ │ │ + │ Pin 3: GPIO2 │ │ │ + │ Pin 4: GPIO3 │ │ │ + │ Pin 5: GPIO0 │ │ │ +PPS (pulse) ────────→ │ Pin 6: GPIO1 │ │ │ + │ Pin 7: GPIO6 │ │ │ + │ Pin 8: GPIO7 │ │ │ + │ Pin 9: GPIO8 │ │ │ + │ Pin 10: GPIO9 │ │ │ + │ Pin 11: GPIO10 │ │ │ + │ Pin 12: GPIO26 │ │ │ + │ Pin 13: GPIO25 │ │ │ + │ Pin 14: 5V │ │ │ +GND ────────→ │ Pin 15: GND │ │ │ + │ Pin 16: NC │ │ │ + └────────────────┘ │ │ + │ Pin 1: GND │ + │ Pin 2: TX │ + │ Pin 3: RX │ + │ Pin 4: GPIO24 │ + │ Pin 5: GPIO23 │ + │ Pin 6: NC │ + │ Pin 7: GPIO27 │ +TXD (data out) ──────────────────────────→ │ Pin 8: GPIO4 │ +RXD (optional) ←────────────────────────────│ Pin 9: GPIO5 │ + │ Pin 10: NC │ + │ Pin 11: GPIO28 │ + │ Pin 12: GND │ + │ Pin 13: GPIO14 │ + │ Pin 14: GPIO13 │ + │ Pin 15: GND │ + │ Pin 16: NC │ + └────────────────┘ + +━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ +GT-U7 IPEX ANTENNA: +• Connect active antenna to GT-U7's IPEX connector +• Place antenna with clear view of sky for best reception +━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ + +REQUIRED CONNECTIONS (4 wires): + 1. GT-U7 VCC → J1 Pin 1 (3V3) + 2. GT-U7 GND → J1 Pin 15 (GND) + 3. GT-U7 TXD → J3 Pin 8 (GPIO4) + 4. GT-U7 PPS → J1 Pin 6 (GPIO1) ++
+your_project/ +├── CMakeLists.txt +└── main/ + ├── CMakeLists.txt + ├── main.c + ├── gps_sync.h + └── gps_sync.c ++ +
#pragma once
+
+#include <stdint.h>
+#include <time.h>
+#include "freertos/FreeRTOS.h"
+#include "freertos/semphr.h"
+
+typedef struct {
+ int64_t monotonic_us; // Never jumps backward
+ int64_t gps_us; // GPS UTC time in microseconds
+ bool synced; // true if GPS has valid fix
+} gps_timestamp_t;
+
+// Initialize GPS sync system
+void gps_sync_init(void);
+
+// Get current timestamp
+gps_timestamp_t gps_get_timestamp(void);
+
+// Check if GPS is synced
+bool gps_is_synced(void);
+
+ #include "gps_sync.h"
+#include "driver/gpio.h"
+#include "driver/uart.h"
+#include "esp_timer.h"
+#include "esp_log.h"
+#include <string.h>
+#include <time.h>
+
+#define GPS_UART_NUM UART_NUM_1
+#define GPS_RX_PIN GPIO_NUM_4
+#define GPS_TX_PIN GPIO_NUM_5
+#define PPS_GPIO GPIO_NUM_1
+#define GPS_BAUD_RATE 9600
+#define UART_BUF_SIZE 1024
+
+static const char *TAG = "GPS_SYNC";
+
+// GPS sync state
+static int64_t monotonic_offset_us = 0;
+static volatile int64_t last_pps_monotonic = 0;
+static volatile time_t next_pps_gps_second = 0;
+static bool gps_has_fix = false;
+static SemaphoreHandle_t sync_mutex;
+
+// PPS interrupt - captures exact monotonic time at second boundary
+static void IRAM_ATTR pps_isr_handler(void* arg) {
+ last_pps_monotonic = esp_timer_get_time();
+}
+
+// Parse GPS time from NMEA sentence
+static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
+ if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) {
+ return false;
+ }
+
+ char *p = strchr(nmea, ',');
+ if (!p) return false;
+
+ // Time field
+ p++;
+ int hour, min, sec;
+ if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) {
+ return false;
+ }
+
+ // Status field (A=valid, V=invalid)
+ p = strchr(p, ',');
+ if (!p) return false;
+ p++;
+ *valid = (*p == 'A');
+
+ // Skip to date field (8 commas ahead from time)
+ for (int i = 0; i < 7; i++) {
+ p = strchr(p, ',');
+ if (!p) return false;
+ p++;
+ }
+
+ // Date field: ddmmyy
+ int day, month, year;
+ if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) {
+ return false;
+ }
+
+ year += (year < 80) ? 2000 : 1900;
+
+ tm_out->tm_sec = sec;
+ tm_out->tm_min = min;
+ tm_out->tm_hour = hour;
+ tm_out->tm_mday = day;
+ tm_out->tm_mon = month - 1;
+ tm_out->tm_year = year - 1900;
+ tm_out->tm_isdst = 0;
+
+ return true;
+}
+
+// GPS processing task
+static void gps_task(void* arg) {
+ char line[128];
+ int pos = 0;
+
+ while (1) {
+ uint8_t data;
+ int len = uart_read_bytes(GPS_UART_NUM, &data, 1, 100 / portTICK_PERIOD_MS);
+
+ if (len > 0) {
+ if (data == '\n') {
+ line[pos] = '\0';
+
+ struct tm gps_tm;
+ bool valid;
+ if (parse_gprmc(line, &gps_tm, &valid)) {
+ if (valid) {
+ time_t gps_time = mktime(&gps_tm);
+
+ xSemaphoreTake(sync_mutex, portMAX_DELAY);
+ next_pps_gps_second = gps_time + 1;
+ xSemaphoreGive(sync_mutex);
+
+ vTaskDelay(pdMS_TO_TICKS(300));
+
+ xSemaphoreTake(sync_mutex, portMAX_DELAY);
+ if (last_pps_monotonic > 0) {
+ int64_t gps_us = (int64_t)next_pps_gps_second * 1000000LL;
+ int64_t new_offset = gps_us - last_pps_monotonic;
+
+ if (monotonic_offset_us == 0) {
+ monotonic_offset_us = new_offset;
+ } else {
+ // Low-pass filter: 90% old + 10% new
+ monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
+ }
+
+ gps_has_fix = true;
+
+ ESP_LOGI(TAG, "GPS sync: %04d-%02d-%02d %02d:%02d:%02d, offset=%lld us",
+ gps_tm.tm_year + 1900, gps_tm.tm_mon + 1, gps_tm.tm_mday,
+ gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
+ monotonic_offset_us);
+ }
+ xSemaphoreGive(sync_mutex);
+ } else {
+ gps_has_fix = false;
+ }
+ }
+
+ pos = 0;
+ } else if (pos < sizeof(line) - 1) {
+ line[pos++] = data;
+ }
+ }
+ }
+}
+
+void gps_sync_init(void) {
+ ESP_LOGI(TAG, "Initializing GPS sync");
+
+ sync_mutex = xSemaphoreCreateMutex();
+
+ uart_config_t uart_config = {
+ .baud_rate = GPS_BAUD_RATE,
+ .data_bits = UART_DATA_8_BITS,
+ .parity = UART_PARITY_DISABLE,
+ .stop_bits = UART_STOP_BITS_1,
+ .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
+ .source_clk = UART_SCLK_DEFAULT,
+ };
+
+ ESP_ERROR_CHECK(uart_driver_install(GPS_UART_NUM, UART_BUF_SIZE, 0, 0, NULL, 0));
+ ESP_ERROR_CHECK(uart_param_config(GPS_UART_NUM, &uart_config));
+ ESP_ERROR_CHECK(uart_set_pin(GPS_UART_NUM, GPS_TX_PIN, GPS_RX_PIN,
+ UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
+
+ gpio_config_t io_conf = {
+ .intr_type = GPIO_INTR_POSEDGE,
+ .mode = GPIO_MODE_INPUT,
+ .pin_bit_mask = (1ULL << PPS_GPIO),
+ .pull_up_en = GPIO_PULLUP_ENABLE,
+ .pull_down_en = GPIO_PULLDOWN_DISABLE,
+ };
+ ESP_ERROR_CHECK(gpio_config(&io_conf));
+
+ ESP_ERROR_CHECK(gpio_install_isr_service(0));
+ ESP_ERROR_CHECK(gpio_isr_handler_add(PPS_GPIO, pps_isr_handler, NULL));
+
+ xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL);
+
+ ESP_LOGI(TAG, "GPS sync initialized (RX=GPIO%d, PPS=GPIO%d)", GPS_RX_PIN, PPS_GPIO);
+}
+
+gps_timestamp_t gps_get_timestamp(void) {
+ gps_timestamp_t ts;
+
+ xSemaphoreTake(sync_mutex, portMAX_DELAY);
+ ts.monotonic_us = esp_timer_get_time();
+ ts.gps_us = ts.monotonic_us + monotonic_offset_us;
+ ts.synced = gps_has_fix;
+ xSemaphoreGive(sync_mutex);
+
+ return ts;
+}
+
+bool gps_is_synced(void) {
+ return gps_has_fix;
+}
+
+ #include <stdio.h>
+#include "freertos/FreeRTOS.h"
+#include "freertos/task.h"
+#include "esp_log.h"
+#include "gps_sync.h"
+
+static const char *TAG = "MAIN";
+
+void log_collapse_event(float nav_duration_us, int rssi) {
+ gps_timestamp_t ts = gps_get_timestamp();
+
+ // CSV format: monotonic_us, gps_us, synced, nav_duration, rssi
+ printf("COLLAPSE,%lld,%lld,%d,%.2f,%d\n",
+ ts.monotonic_us,
+ ts.gps_us,
+ ts.synced ? 1 : 0,
+ nav_duration_us,
+ rssi);
+}
+
+void app_main(void) {
+ ESP_LOGI(TAG, "Starting GPS sync");
+
+ gps_sync_init();
+
+ ESP_LOGI(TAG, "Waiting for GPS fix...");
+ while (!gps_is_synced()) {
+ vTaskDelay(pdMS_TO_TICKS(1000));
+ }
+ ESP_LOGI(TAG, "GPS synced!");
+
+ while (1) {
+ gps_timestamp_t ts = gps_get_timestamp();
+
+ ESP_LOGI(TAG, "Time: mono=%lld gps=%lld synced=%d",
+ ts.monotonic_us, ts.gps_us, ts.synced);
+
+ // Example: log collapse event
+ if (ts.monotonic_us % 10000000 < 100000) {
+ log_collapse_event(1234.5, -65);
+ }
+
+ vTaskDelay(pdMS_TO_TICKS(1000));
+ }
+}
+
+ idf_component_register(SRCS "main.c" "gps_sync.c"
+ INCLUDE_DIRS ".")
+ # Install ESP-IDF (if not already installed)
+# Follow: https://docs.espressif.com/projects/esp-idf/en/latest/esp32c5/get-started/
+
+# Set target to ESP32-C5
+idf.py set-target esp32c5
+
+# Build the project
+idf.py build
+
+# Flash to device
+idf.py flash
+
+# Monitor output
+idf.py monitor
+
+ +I (500) GPS_SYNC: Initializing GPS sync (RX=GPIO4, PPS=GPIO1) +I (1000) MAIN: Waiting for GPS fix... +I (5000) GPS_SYNC: GPS sync: 2025-12-06 18:30:45, offset=1733424645123456 us +I (5001) MAIN: GPS synced! +I (6000) MAIN: Time: mono=123456789 gps=1733424645123456 synced=1 +COLLAPSE,123456789,1733424645123456,1,1234.50,-65 ++
Your Pi is already GPS-synced. Run iperf2 with timestamps:
+# Server mode with histograms and trip-times
+iperf -s --histograms --trip-times -i 0.1
+
+# Or as client testing against a target
+iperf -c target_ip --histograms --trip-times -i 0.1
+
+ Both systems now share GPS time. Example Python analysis:
+import pandas as pd
+import matplotlib.pyplot as plt
+
+# Load ESP32 collapse events
+esp32_events = pd.read_csv('collapse_events.csv',
+ names=['event', 'mono_us', 'gps_us', 'synced', 'nav_dur', 'rssi'],
+ parse_dates=['gps_us'],
+ date_parser=lambda x: pd.to_datetime(int(x), unit='us'))
+
+# Load iperf2 data
+iperf_data = pd.read_csv('iperf_histograms.csv',
+ parse_dates=['timestamp'])
+
+# Merge on GPS timestamp (within 100ms window)
+merged = pd.merge_asof(iperf_data.sort_values('timestamp'),
+ esp32_events.sort_values('gps_us'),
+ left_on='timestamp',
+ right_on='gps_us',
+ tolerance=pd.Timedelta('100ms'),
+ direction='nearest')
+
+# Plot latency vs collapse events
+fig, ax1 = plt.subplots(figsize=(12, 6))
+ax1.plot(merged['timestamp'], merged['latency_ms'], 'b-', label='Latency')
+ax1.set_ylabel('Latency (ms)', color='b')
+
+ax2 = ax1.twinx()
+collapse_times = merged[merged['event'] == 'COLLAPSE']['timestamp']
+ax2.scatter(collapse_times, [1]*len(collapse_times), color='r', marker='x', s=100, label='Collapse')
+ax2.set_ylabel('Collapse Events', color='r')
+
+plt.title('WiFi Latency vs Collapse Detection Events')
+plt.show()
+ Flash and configure multiple ESP32s with unique static IPs:
+#!/bin/bash
+# flash_all.sh
+
+START_IP=192.168.1.100
+PORT_BASE=/dev/ttyUSB
+
+for i in {0..31}; do
+ DEVICE=${PORT_BASE}${i}
+ IP=$((START_IP + i))
+
+ echo "Flashing device $i at $DEVICE with IP 192.168.1.$IP"
+
+ # Set device-specific config
+ idf.py -p $DEVICE -D DEVICE_ID=$i -D STATIC_IP=192.168.1.$IP flash
+
+ sleep 2
+done
+
+echo "All devices flashed!"
+
+ | Component | +Accuracy | +Notes | +
|---|---|---|
| GT-U7 GPS PPS Output | +±50-100ns | +Compatible with NEO-6M timing specs | +
| ESP32 Interrupt Latency | +1-5μs typical | +IRAM_ATTR reduces latency | +
| esp_timer_get_time() | +1μs resolution | +Accuracy ±10-20ppm (crystal dependent) | +
| Overall System | +~5-10μs | +Sufficient for latency histogram correlation | +