Compare commits

..

No commits in common. "feature/generic-shell" and "master" have entirely different histories.

16 changed files with 538 additions and 1339 deletions

View File

@ -1,3 +1,3 @@
idf_component_register(SRCS "app_console.c" idf_component_register(SRCS "app_console.c"
INCLUDE_DIRS "." INCLUDE_DIRS "."
PRIV_REQUIRES console wifi_cfg wifi_controller iperf nvs_flash gps_sync) PRIV_REQUIRES console wifi_cfg iperf)

View File

@ -4,248 +4,16 @@
#include "argtable3/argtable3.h" #include "argtable3/argtable3.h"
#include "wifi_cfg.h" #include "wifi_cfg.h"
#include "iperf.h" #include "iperf.h"
#include "gps_sync.h"
#include "wifi_controller.h"
#include "esp_wifi.h"
#include "nvs.h"
#include "nvs_flash.h"
#include <string.h> #include <string.h>
#include <arpa/inet.h>
#include <inttypes.h>
#include <time.h>
// --- Helper: Prompt Update ---
// Updates the "esp32>" vs "esp32*>" prompt based on dirty state
static void end_cmd(void) {
app_console_update_prompt();
}
// ============================================================================
// COMMAND: nvs (Storage Management)
// ============================================================================
static struct {
struct arg_lit *dump;
struct arg_lit *clear_all;
struct arg_lit *help;
struct arg_end *end;
} nvs_args;
static void print_nvs_key_str(nvs_handle_t h, const char *key, const char *label) {
char buf[64] = {0};
size_t len = sizeof(buf);
if (nvs_get_str(h, key, buf, &len) == ESP_OK) {
printf(" %-12s : %s\n", label, buf);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static void print_nvs_key_u32(nvs_handle_t h, const char *key, const char *label) {
uint32_t val = 0;
if (nvs_get_u32(h, key, &val) == ESP_OK) {
printf(" %-12s : %" PRIu32 "\n", label, val);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static void print_nvs_key_u8(nvs_handle_t h, const char *key, const char *label) {
uint8_t val = 0;
if (nvs_get_u8(h, key, &val) == ESP_OK) {
printf(" %-12s : %u\n", label, val);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static int cmd_nvs(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&nvs_args);
if (nerrors > 0) {
arg_print_errors(stderr, nvs_args.end, argv[0]);
return 1;
}
if (nvs_args.help->count > 0) {
printf("Usage: nvs [--dump] [--clear-all]\n");
return 0;
}
// --- CLEAR ALL ---
if (nvs_args.clear_all->count > 0) {
printf("Erasing ALL settings from NVS...\n");
wifi_cfg_clear_credentials();
wifi_cfg_clear_monitor_channel();
iperf_param_clear();
printf("Done. Please reboot.\n");
end_cmd();
return 0;
}
// --- DUMP ---
printf("\n--- [WiFi Config (netcfg)] ---\n");
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READONLY, &h) == ESP_OK) {
print_nvs_key_str(h, "ssid", "SSID");
print_nvs_key_str(h, "pass", "Password");
print_nvs_key_str(h, "ip", "Static IP");
print_nvs_key_str(h, "mask", "Netmask");
print_nvs_key_str(h, "gw", "Gateway");
print_nvs_key_u8 (h, "dhcp", "DHCP");
print_nvs_key_u8 (h, "mon_ch", "Monitor Ch");
nvs_close(h);
} else {
printf("Failed to open 'netcfg' namespace.\n");
}
printf("\n--- [iPerf Config (storage)] ---\n");
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
print_nvs_key_str(h, "iperf_dst_ip", "Dest IP");
print_nvs_key_u32(h, "iperf_port", "Port");
print_nvs_key_u32(h, "iperf_pps", "Target PPS");
print_nvs_key_u32(h, "iperf_len", "Packet Len");
print_nvs_key_u32(h, "iperf_burst", "Burst");
nvs_close(h);
} else {
printf("Failed to open 'storage' namespace.\n");
}
printf("\n");
end_cmd();
return 0;
}
static void register_nvs_cmd(void) {
nvs_args.dump = arg_lit0(NULL, "dump", "Show all");
nvs_args.clear_all = arg_lit0(NULL, "clear-all", "Factory Reset");
nvs_args.help = arg_lit0("h", "help", "Help");
nvs_args.end = arg_end(1);
const esp_console_cmd_t cmd = {
.command = "nvs",
.help = "Storage Management",
.func = &cmd_nvs,
.argtable = &nvs_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================
// COMMAND: gps (Configure & Status)
// ============================================================================
static struct {
struct arg_lit *enable;
struct arg_lit *disable;
struct arg_lit *status;
struct arg_lit *help;
struct arg_end *end;
} gps_args;
static int cmd_gps(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&gps_args);
if (nerrors > 0) {
arg_print_errors(stderr, gps_args.end, argv[0]);
return 1;
}
if (gps_args.help->count > 0) {
printf("Usage: gps [--enable|--disable|--status]\n");
return 0;
}
nvs_handle_t h;
esp_err_t err = nvs_open("storage", NVS_READWRITE, &h);
if (err != ESP_OK) {
printf("Error opening NVS: %s\n", esp_err_to_name(err));
return 1;
}
// --- HANDLE SETTERS ---
bool changed = false;
if (gps_args.enable->count > 0) {
nvs_set_u8(h, "gps_enabled", 1);
printf("GPS set to ENABLED. (Reboot required)\n");
changed = true;
} else if (gps_args.disable->count > 0) {
nvs_set_u8(h, "gps_enabled", 0);
printf("GPS set to DISABLED. (Reboot required)\n");
changed = true;
}
if (changed) nvs_commit(h);
// --- DISPLAY STATUS ---
// 1. NVS State
uint8_t val = 1;
if (nvs_get_u8(h, "gps_enabled", &val) != ESP_OK) val = 1;
printf("GPS NVS State: %s\n", val ? "ENABLED" : "DISABLED");
nvs_close(h);
// 2. Runtime Status
if (val) {
gps_timestamp_t ts = gps_get_timestamp();
int64_t pps_age = gps_get_pps_age_ms();
printf("Status: %s\n", ts.synced ? "SYNCED" : "SEARCHING");
// Print Raw NMEA ---
char nmea_buf[128];
gps_get_last_nmea(nmea_buf, sizeof(nmea_buf));
// Remove trailing \r\n for cleaner printing
size_t len = strlen(nmea_buf);
if (len > 0 && (nmea_buf[len-1] == '\r' || nmea_buf[len-1] == '\n')) nmea_buf[len-1] = 0;
if (len > 1 && (nmea_buf[len-2] == '\r' || nmea_buf[len-2] == '\n')) nmea_buf[len-2] = 0;
printf("Last NMEA: [%s]\n", nmea_buf);
// ---------------------------
if (pps_age < 0) {
printf("PPS Signal: NEVER DETECTED\n");
} else if (pps_age > 1100) {
printf("PPS Signal: LOST (Last seen %" PRId64 " ms ago)\n", pps_age);
} else {
printf("PPS Signal: ACTIVE (Age: %" PRId64 " ms)\n", pps_age);
}
if (ts.gps_us > 0) {
time_t now_sec = ts.gps_us / 1000000;
struct tm tm_info;
gmtime_r(&now_sec, &tm_info);
char time_buf[64];
strftime(time_buf, sizeof(time_buf), "%Y-%m-%d %H:%M:%S UTC", &tm_info);
printf("Current Time: %s\n", time_buf);
} else {
printf("Current Time: <Unknown> (System Epoch)\n");
}
}
end_cmd();
return 0;
}
static void register_gps_cmd(void) {
gps_args.enable = arg_lit0(NULL, "enable", "Enable GPS");
gps_args.disable = arg_lit0(NULL, "disable", "Disable GPS");
gps_args.status = arg_lit0(NULL, "status", "Show Status");
gps_args.help = arg_lit0("h", "help", "Help");
gps_args.end = arg_end(2);
const esp_console_cmd_t cmd = {
.command = "gps",
.help = "Configure GPS",
.func = &cmd_gps,
.argtable = &gps_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================ // ============================================================================
// COMMAND: iperf // COMMAND: iperf
// ============================================================================ // ============================================================================
static struct { static struct {
struct arg_lit *start, *stop, *status, *save, *reload; struct arg_lit *start;
struct arg_lit *clear_nvs; struct arg_lit *stop;
struct arg_str *ip; struct arg_lit *status;
struct arg_int *port, *pps, *len, *burst; struct arg_int *pps;
struct arg_lit *help; struct arg_lit *help;
struct arg_end *end; struct arg_end *end;
} iperf_args; } iperf_args;
@ -258,222 +26,55 @@ static int cmd_iperf(int argc, char **argv) {
} }
if (iperf_args.help->count > 0) { if (iperf_args.help->count > 0) {
printf("Usage: iperf [options]\n"); printf("Usage: iperf [start|stop|status] [--pps <n>]\n");
printf(" --start Start traffic\n");
printf(" --stop Stop traffic\n");
printf(" --save Save config to NVS\n");
printf(" --clear-nvs Reset to defaults\n");
printf(" -c <ip> Set Dest IP\n");
printf(" --pps <n> Set Packets Per Sec\n");
return 0; return 0;
} }
if (iperf_args.clear_nvs->count > 0) { if (iperf_args.stop->count > 0) {
iperf_param_clear(); iperf_stop();
printf("iPerf Configuration cleared (Reset to defaults).\n");
end_cmd();
return 0; return 0;
} }
if (iperf_args.reload->count > 0) { if (iperf_args.pps->count > 0) {
iperf_param_init(); int val = iperf_args.pps->ival[0];
printf("Configuration reloaded from NVS.\n"); if (val > 0) {
} iperf_set_pps((uint32_t)val);
bool config_changed = false;
iperf_cfg_t cfg;
iperf_param_get(&cfg);
if (iperf_args.ip->count > 0) { cfg.dip = inet_addr(iperf_args.ip->sval[0]); config_changed = true; }
if (iperf_args.port->count > 0) { cfg.dport = (uint16_t)iperf_args.port->ival[0]; config_changed = true; }
if (iperf_args.len->count > 0) { cfg.send_len = (uint32_t)iperf_args.len->ival[0]; config_changed = true; }
if (iperf_args.burst->count > 0) { cfg.burst_count = (uint32_t)iperf_args.burst->ival[0]; config_changed = true; }
if (iperf_args.pps->count > 0) {
if (iperf_args.pps->ival[0] > 0) {
cfg.target_pps = (uint32_t)iperf_args.pps->ival[0];
config_changed = true;
}
}
if (config_changed) {
iperf_param_set(&cfg);
printf("RAM configuration updated.\n");
}
if (iperf_args.save->count > 0) {
bool changed = false;
if (iperf_param_save(&changed) == ESP_OK) {
printf(changed ? "Configuration saved to NVS.\n" : "No changes to save (NVS matches RAM).\n");
} else { } else {
printf("Error saving to NVS.\n"); printf("Error: PPS must be > 0\n");
} }
return 0;
} }
if (iperf_args.stop->count > 0) iperf_stop(); if (iperf_args.status->count > 0) {
if (iperf_args.start->count > 0) iperf_start(); iperf_print_status();
if (iperf_args.status->count > 0) iperf_print_status(); return 0;
}
if (iperf_args.start->count > 0) {
// Start using saved NVS config
iperf_cfg_t cfg = { .time = 0 };
iperf_start(&cfg);
return 0;
}
end_cmd();
return 0; return 0;
} }
static void register_iperf_cmd(void) { static void register_iperf_cmd(void) {
iperf_args.start = arg_lit0(NULL, "start", "Start"); iperf_args.start = arg_lit0(NULL, "start", "Start iperf traffic");
iperf_args.stop = arg_lit0(NULL, "stop", "Stop"); iperf_args.stop = arg_lit0(NULL, "stop", "Stop iperf traffic");
iperf_args.status = arg_lit0(NULL, "status", "Status"); iperf_args.status = arg_lit0(NULL, "status", "Show current statistics");
iperf_args.save = arg_lit0(NULL, "save", "Save"); iperf_args.pps = arg_int0(NULL, "pps", "<n>", "Set packets per second");
iperf_args.reload = arg_lit0(NULL, "reload", "Reload"); iperf_args.help = arg_lit0(NULL, "help", "Show help");
iperf_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS"); iperf_args.end = arg_end(20);
iperf_args.ip = arg_str0("c", "client", "<ip>", "IP");
iperf_args.port = arg_int0("p", "port", "<port>", "Port");
iperf_args.pps = arg_int0(NULL, "pps", "<n>", "PPS");
iperf_args.len = arg_int0(NULL, "len", "<bytes>", "Len");
iperf_args.burst = arg_int0(NULL, "burst", "<count>", "Burst");
iperf_args.help = arg_lit0("h", "help", "Help");
iperf_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "iperf", .help = "Traffic Gen", .func = &cmd_iperf, .argtable = &iperf_args }; const esp_console_cmd_t cmd = {
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd)); .command = "iperf",
} .help = "Control iperf traffic generator",
.hint = NULL,
// ============================================================================ .func = &cmd_iperf,
// COMMAND: monitor .argtable = &iperf_args
// ============================================================================ };
static struct {
struct arg_lit *start, *stop, *status, *save, *reload;
struct arg_lit *clear_nvs;
struct arg_int *channel;
struct arg_lit *help;
struct arg_end *end;
} mon_args;
static int cmd_monitor(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&mon_args);
if (nerrors > 0) {
arg_print_errors(stderr, mon_args.end, argv[0]);
return 1;
}
if (mon_args.help->count > 0) {
printf("Usage: monitor [--start|--stop] [-c <ch>] [--save|--reload]\n");
return 0;
}
if (mon_args.clear_nvs->count > 0) {
wifi_ctl_param_clear();
printf("Monitor config cleared (Defaulting to Ch 6).\n");
end_cmd();
return 0;
}
if (mon_args.reload->count > 0) {
wifi_ctl_param_reload();
printf("Config reloaded from NVS.\n");
}
if (mon_args.channel->count > 0) {
wifi_ctl_param_set_monitor_channel((uint8_t)mon_args.channel->ival[0]);
printf("Channel set to %d (RAM).\n", mon_args.channel->ival[0]);
}
if (mon_args.save->count > 0) {
if (wifi_ctl_param_save()) printf("Configuration saved to NVS.\n");
else printf("No changes to save (NVS matches RAM).\n");
}
if (mon_args.stop->count > 0) {
wifi_ctl_switch_to_sta(WIFI_BW_HT20);
printf("Switched to Station Mode.\n");
}
if (mon_args.start->count > 0) {
if (wifi_ctl_switch_to_monitor(0, WIFI_BW_HT20) == ESP_OK) printf("Monitor Mode Started.\n");
else printf("Failed to start Monitor Mode.\n");
}
if (mon_args.status->count > 0) {
wifi_ctl_mode_t mode = wifi_ctl_get_mode();
printf("MONITOR STATUS:\n");
printf(" Mode: %s\n", (mode == WIFI_CTL_MODE_MONITOR) ? "MONITOR" : "STATION");
printf(" Active: Ch %d\n", (mode == WIFI_CTL_MODE_MONITOR) ? wifi_ctl_get_monitor_channel() : 0);
printf(" Staged: Ch %d\n", wifi_ctl_param_get_monitor_channel());
printf(" Frames: %" PRIu32 "\n", wifi_ctl_get_monitor_frame_count());
}
end_cmd();
return 0;
}
static void register_monitor_cmd(void) {
mon_args.start = arg_lit0(NULL, "start", "Start");
mon_args.stop = arg_lit0(NULL, "stop", "Stop");
mon_args.status = arg_lit0(NULL, "status", "Status");
mon_args.save = arg_lit0(NULL, "save", "Save");
mon_args.reload = arg_lit0(NULL, "reload", "Reload");
mon_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS");
mon_args.channel = arg_int0("c", "channel", "<n>", "Chan");
mon_args.help = arg_lit0("h", "help", "Help");
mon_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "monitor", .help = "Monitor Mode", .func = &cmd_monitor, .argtable = &mon_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================
// COMMAND: scan
// ============================================================================
static struct {
struct arg_lit *help;
struct arg_end *end;
} scan_args;
static int cmd_scan(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&scan_args);
if (nerrors > 0) {
arg_print_errors(stderr, scan_args.end, argv[0]);
return 1;
}
if (scan_args.help->count > 0) {
printf("Usage: scan\n");
return 0;
}
printf("Starting WiFi Scan...\n");
// Force STA mode to allow scanning
wifi_ctl_switch_to_sta(WIFI_BW_HT20);
wifi_scan_config_t scan_config = { .show_hidden = true };
esp_err_t err = esp_wifi_scan_start(&scan_config, true);
if (err != ESP_OK) {
printf("Scan failed: %s\n", esp_err_to_name(err));
return 1;
}
uint16_t ap_count = 0;
esp_wifi_scan_get_ap_num(&ap_count);
printf("Found %d APs:\n", ap_count);
if (ap_count > 0) {
wifi_ap_record_t *ap_list = (wifi_ap_record_t *)malloc(sizeof(wifi_ap_record_t) * ap_count);
if (ap_list) {
esp_wifi_scan_get_ap_records(&ap_count, ap_list);
printf("%-32s | %-4s | %-4s | %-3s\n", "SSID", "RSSI", "CH", "Auth");
printf("----------------------------------------------------------\n");
for (int i = 0; i < ap_count; i++) {
printf("%-32s | %-4d | %-4d | %d\n", (char *)ap_list[i].ssid, ap_list[i].rssi, ap_list[i].primary, ap_list[i].authmode);
}
free(ap_list);
}
}
return 0;
}
static void register_scan_cmd(void) {
scan_args.help = arg_lit0("h", "help", "Help");
scan_args.end = arg_end(1);
const esp_console_cmd_t cmd = { .command = "scan", .help = "WiFi Scan", .func = &cmd_scan, .argtable = &scan_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd)); ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
} }
@ -485,7 +86,6 @@ static struct {
struct arg_str *pass; struct arg_str *pass;
struct arg_str *ip; struct arg_str *ip;
struct arg_lit *dhcp; struct arg_lit *dhcp;
struct arg_lit *clear_nvs;
struct arg_lit *help; struct arg_lit *help;
struct arg_end *end; struct arg_end *end;
} wifi_args; } wifi_args;
@ -498,13 +98,7 @@ static int cmd_wifi_config(int argc, char **argv) {
} }
if (wifi_args.help->count > 0) { if (wifi_args.help->count > 0) {
printf("Usage: wifi_config -s <ssid> [-p <pass>] [--clear-nvs]\n"); printf("Usage: wifi_config -s <ssid> -p <pass> [-i <ip>] [-d]\n");
return 0;
}
if (wifi_args.clear_nvs->count > 0) {
wifi_cfg_clear_credentials();
printf("WiFi Credentials CLEARED from NVS.\n");
return 0; return 0;
} }
@ -515,6 +109,7 @@ static int cmd_wifi_config(int argc, char **argv) {
const char* ssid = wifi_args.ssid->sval[0]; const char* ssid = wifi_args.ssid->sval[0];
const char* pass = (wifi_args.pass->count > 0) ? wifi_args.pass->sval[0] : ""; const char* pass = (wifi_args.pass->count > 0) ? wifi_args.pass->sval[0] : "";
const char* ip = (wifi_args.ip->count > 0) ? wifi_args.ip->sval[0] : NULL; const char* ip = (wifi_args.ip->count > 0) ? wifi_args.ip->sval[0] : NULL;
bool dhcp = (wifi_args.dhcp->count > 0); bool dhcp = (wifi_args.dhcp->count > 0);
@ -525,7 +120,10 @@ static int cmd_wifi_config(int argc, char **argv) {
if (ip) { if (ip) {
char mask[] = "255.255.255.0"; char mask[] = "255.255.255.0";
char gw[32]; char gw[32];
// FIXED: Use strlcpy instead of strncpy to prevent truncation warnings
strlcpy(gw, ip, sizeof(gw)); strlcpy(gw, ip, sizeof(gw));
char *last_dot = strrchr(gw, '.'); char *last_dot = strrchr(gw, '.');
if (last_dot) strcpy(last_dot, ".1"); if (last_dot) strcpy(last_dot, ".1");
@ -541,23 +139,24 @@ static int cmd_wifi_config(int argc, char **argv) {
} }
static void register_wifi_cmd(void) { static void register_wifi_cmd(void) {
wifi_args.ssid = arg_str0("s", "ssid", "<ssid>", "SSID"); wifi_args.ssid = arg_str0("s", "ssid", "<ssid>", "WiFi SSID");
wifi_args.pass = arg_str0("p", "password", "<pass>", "Pass"); wifi_args.pass = arg_str0("p", "password", "<pass>", "WiFi Password");
wifi_args.ip = arg_str0("i", "ip", "<ip>", "Static IP"); wifi_args.ip = arg_str0("i", "ip", "<ip>", "Static IP");
wifi_args.dhcp = arg_lit0("d", "dhcp", "Enable DHCP"); wifi_args.dhcp = arg_lit0("d", "dhcp", "Enable DHCP");
wifi_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS"); wifi_args.help = arg_lit0("h", "help", "Show help");
wifi_args.help = arg_lit0("h", "help", "Help");
wifi_args.end = arg_end(20); wifi_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "wifi_config", .help = "Configure WiFi", .func = &cmd_wifi_config, .argtable = &wifi_args }; const esp_console_cmd_t cmd = {
.command = "wifi_config",
.help = "Configure WiFi credentials",
.hint = NULL,
.func = &cmd_wifi_config,
.argtable = &wifi_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd)); ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
} }
void app_console_register_commands(void) { void app_console_register_commands(void) {
register_iperf_cmd(); register_iperf_cmd();
register_monitor_cmd();
register_scan_cmd();
register_wifi_cmd(); register_wifi_cmd();
register_nvs_cmd();
register_gps_cmd();
} }

View File

@ -8,8 +8,6 @@ extern "C" {
* @brief Register application-specific console commands * @brief Register application-specific console commands
*/ */
void app_console_register_commands(void); void app_console_register_commands(void);
// Implemented in main.c - updates prompt based on NVS dirty state
void app_console_update_prompt(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -20,47 +20,42 @@ static const char *TAG = "GPS_SYNC";
static uart_port_t gps_uart_num = UART_NUM_1; static uart_port_t gps_uart_num = UART_NUM_1;
static int64_t monotonic_offset_us = 0; static int64_t monotonic_offset_us = 0;
static volatile int64_t last_pps_monotonic = 0; static volatile int64_t last_pps_monotonic = 0;
static volatile time_t next_pps_gps_second = 0;
static bool gps_has_fix = false; static bool gps_has_fix = false;
static bool use_gps_for_logs = false; static bool use_gps_for_logs = false;
static SemaphoreHandle_t sync_mutex; static SemaphoreHandle_t sync_mutex;
static volatile bool force_sync_update = true; static volatile bool force_sync_update = true;
// Debug Buffer // PPS interrupt
static char s_last_nmea_line[128] = "<WAITING FOR DATA>";
// PPS interrupt: Captures the exact monotonic time of the rising edge
static void IRAM_ATTR pps_isr_handler(void* arg) { static void IRAM_ATTR pps_isr_handler(void* arg) {
int64_t now = esp_timer_get_time(); static bool onetime = true;
last_pps_monotonic = now; last_pps_monotonic = esp_timer_get_time();
if (onetime) {
esp_rom_printf("PPS connected!\n");
onetime = false;
}
} }
// Parse GPS time from NMEA (GPRMC or GNRMC) // Parse GPS time from NMEA
static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) { static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) return false; if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) return false;
char *p = strchr(nmea, ','); char *p = strchr(nmea, ',');
if (!p) return false; if (!p) return false;
p++; // Move past comma p++;
int hour, min, sec; int hour, min, sec;
if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) return false; if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) return false;
p = strchr(p, ','); p = strchr(p, ',');
if (!p) return false; if (!p) return false;
p++; p++;
*valid = (*p == 'A'); *valid = (*p == 'A');
for (int i = 0; i < 7; i++) { for (int i = 0; i < 7; i++) {
p = strchr(p, ','); p = strchr(p, ',');
if (!p) return false; if (!p) return false;
p++; p++;
} }
int day, month, year; int day, month, year;
if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) return false; if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) return false;
year += (year < 80) ? 2000 : 1900; year += (year < 80) ? 2000 : 1900;
tm_out->tm_sec = sec; tm_out->tm_sec = sec;
tm_out->tm_min = min; tm_out->tm_min = min;
tm_out->tm_hour = hour; tm_out->tm_hour = hour;
@ -68,7 +63,6 @@ static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
tm_out->tm_mon = month - 1; tm_out->tm_mon = month - 1;
tm_out->tm_year = year - 1900; tm_out->tm_year = year - 1900;
tm_out->tm_isdst = 0; tm_out->tm_isdst = 0;
return true; return true;
} }
@ -77,145 +71,115 @@ void gps_force_next_update(void) {
ESP_LOGW(TAG, "Requesting forced GPS sync update"); ESP_LOGW(TAG, "Requesting forced GPS sync update");
} }
static time_t timegm_impl(struct tm *tm) {
time_t t = mktime(tm);
return t;
}
static void gps_task(void* arg) { static void gps_task(void* arg) {
uint8_t d_buf[64]; uint8_t d_buf[64];
char line[128]; char line[128];
int pos = 0; int pos = 0;
static int log_counter = 0; static int log_counter = 0;
setenv("TZ", "UTC", 1);
tzset();
while (1) { while (1) {
int len = uart_read_bytes(gps_uart_num, d_buf, sizeof(d_buf), pdMS_TO_TICKS(100)); int len = uart_read_bytes(gps_uart_num, d_buf, sizeof(d_buf), pdMS_TO_TICKS(100));
if (len > 0) { if (len > 0) {
for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
uint8_t data = d_buf[i]; uint8_t data = d_buf[i];
if (data == '\n') {
if (data == '\n' || data == '\r') { line[pos] = '\0';
if (pos > 0) { struct tm gps_tm;
line[pos] = '\0'; bool valid;
if (parse_gprmc(line, &gps_tm, &valid)) {
// Copy to debug buffer if (valid) {
xSemaphoreTake(sync_mutex, portMAX_DELAY); time_t gps_time = mktime(&gps_tm);
strncpy(s_last_nmea_line, line, sizeof(s_last_nmea_line) - 1); xSemaphoreTake(sync_mutex, portMAX_DELAY);
s_last_nmea_line[sizeof(s_last_nmea_line) - 1] = '\0'; next_pps_gps_second = gps_time + 1;
xSemaphoreGive(sync_mutex); xSemaphoreGive(sync_mutex);
vTaskDelay(pdMS_TO_TICKS(300));
struct tm gps_tm; xSemaphoreTake(sync_mutex, portMAX_DELAY);
bool valid_fix; if (last_pps_monotonic > 0) {
int64_t gps_us = (int64_t)next_pps_gps_second * 1000000LL;
if (parse_gprmc(line, &gps_tm, &valid_fix)) { int64_t new_offset = gps_us - last_pps_monotonic;
if (valid_fix) { if (monotonic_offset_us == 0 || force_sync_update) {
time_t gps_time_sec = timegm_impl(&gps_tm); monotonic_offset_us = new_offset;
int64_t last_pps_snap = last_pps_monotonic; if (force_sync_update) {
int64_t now = esp_timer_get_time(); ESP_LOGW(TAG, "GPS sync SNAP: Offset forced to %" PRIi64 " us", monotonic_offset_us);
int64_t age_us = now - last_pps_snap; force_sync_update = false;
log_counter = 0;
if (last_pps_snap > 0 && age_us < 900000) {
int64_t gps_time_us = (int64_t)gps_time_sec * 1000000LL;
int64_t new_offset = gps_time_us - last_pps_snap;
xSemaphoreTake(sync_mutex, portMAX_DELAY);
if (monotonic_offset_us == 0 || force_sync_update) {
monotonic_offset_us = new_offset;
if (force_sync_update) {
ESP_LOGW(TAG, "GPS SNAP: Offset forced to %" PRIi64 " us", monotonic_offset_us);
force_sync_update = false;
log_counter = 0;
}
} else {
monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
} }
gps_has_fix = true;
xSemaphoreGive(sync_mutex);
// Periodic Logging
if (log_counter <= 0) {
// CHANGED FROM ESP_LOGI TO ESP_LOGD (Hidden by default)
ESP_LOGD(TAG, "GPS Sync: %02d:%02d:%02d | Offset: %" PRIi64 " us | PPS Age: %" PRIi64 " ms",
gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
monotonic_offset_us, age_us / 1000);
log_counter = 10;
}
log_counter--;
} else { } else {
// Keep Warnings visible monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
if (log_counter <= 0) {
ESP_LOGW(TAG, "GPS valid but PPS missing/old (Age: %" PRIi64 " ms)", age_us / 1000);
log_counter = 10;
}
log_counter--;
} }
} else { gps_has_fix = true;
gps_has_fix = false; if (log_counter == 0) {
ESP_LOGI(TAG, "GPS sync: %04d-%02d-%02d %02d:%02d:%02d, offset=%" PRIi64 " us",
gps_tm.tm_year + 1900, gps_tm.tm_mon + 1, gps_tm.tm_mday,
gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
monotonic_offset_us);
log_counter = 60;
}
log_counter--;
} }
xSemaphoreGive(sync_mutex);
} else {
gps_has_fix = false;
} }
} }
pos = 0; pos = 0;
} else { } else if (pos < sizeof(line) - 1) {
if (pos < sizeof(line) - 1) { line[pos++] = data;
line[pos++] = data;
}
} }
} }
} }
} }
} }
void gps_get_last_nmea(char *buf, size_t max_len) {
if (!buf || max_len == 0) return;
xSemaphoreTake(sync_mutex, portMAX_DELAY);
strncpy(buf, s_last_nmea_line, max_len);
buf[max_len - 1] = '\0';
xSemaphoreGive(sync_mutex);
}
void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps) { void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps) {
ESP_LOGI(TAG, "Initializing GPS Sync (UART %d, PPS GPIO %d)", config->uart_port, config->pps_pin); ESP_LOGI(TAG, "Checking for GPS PPS signal on GPIO %d...", config->pps_pin);
gpio_config_t pps_poll_conf = { // 1. Configure PPS pin as Input to sense signal
gpio_config_t pps_conf = {
.pin_bit_mask = (1ULL << config->pps_pin), .pin_bit_mask = (1ULL << config->pps_pin),
.mode = GPIO_MODE_INPUT, .mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_DISABLE, .pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, // High-Z to detect active driving
.intr_type = GPIO_INTR_DISABLE .intr_type = GPIO_INTR_DISABLE
}; };
ESP_ERROR_CHECK(gpio_config(&pps_poll_conf)); ESP_ERROR_CHECK(gpio_config(&pps_conf));
// 2. Poll for ~3 seconds to detect ANY edge transition
bool pps_detected = false; bool pps_detected = false;
int start_level = gpio_get_level(config->pps_pin); int start_level = gpio_get_level(config->pps_pin);
for (int i = 0; i < 2000; i++) {
if (gpio_get_level(config->pps_pin) != start_level) { // Poll loop: 3000 iterations * 1ms = 3 seconds
for (int i = 0; i < 3000; i++) {
int current_level = gpio_get_level(config->pps_pin);
if (current_level != start_level) {
pps_detected = true; pps_detected = true;
break; break; // Signal found!
} }
vTaskDelay(pdMS_TO_TICKS(1)); vTaskDelay(pdMS_TO_TICKS(1));
} }
if (!pps_detected) { if (!pps_detected) {
ESP_LOGW(TAG, "No PPS signal detected on GPIO %d during boot check.", config->pps_pin); printf("GPS PPS not found over GPIO with pin number %d\n", config->pps_pin);
} else { ESP_LOGW(TAG, "GPS initialization aborted due to lack of PPS signal.");
ESP_LOGI(TAG, "PPS signal activity detected."); return; // ABORT INITIALIZATION
} }
ESP_LOGI(TAG, "PPS signal detected! Initializing GPS subsystem...");
// 3. Proceed with Full Initialization
gps_uart_num = config->uart_port; gps_uart_num = config->uart_port;
use_gps_for_logs = use_gps_log_timestamps; use_gps_for_logs = use_gps_log_timestamps;
gps_force_next_update(); gps_force_next_update();
sync_mutex = xSemaphoreCreateMutex();
if (use_gps_log_timestamps) { if (use_gps_log_timestamps) {
ESP_LOGI(TAG, "ESP_LOG timestamps: GPS time in seconds.milliseconds format");
esp_log_set_vprintf(gps_log_vprintf); esp_log_set_vprintf(gps_log_vprintf);
} }
sync_mutex = xSemaphoreCreateMutex();
uart_config_t uart_config = { uart_config_t uart_config = {
.baud_rate = GPS_BAUD_RATE, .baud_rate = GPS_BAUD_RATE,
.data_bits = UART_DATA_8_BITS, .data_bits = UART_DATA_8_BITS,
@ -227,54 +191,55 @@ void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps)
ESP_ERROR_CHECK(uart_driver_install(config->uart_port, UART_BUF_SIZE, 0, 0, NULL, 0)); ESP_ERROR_CHECK(uart_driver_install(config->uart_port, UART_BUF_SIZE, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(config->uart_port, &uart_config)); ESP_ERROR_CHECK(uart_param_config(config->uart_port, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(config->uart_port, config->tx_pin, config->rx_pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
gpio_config_t pps_intr_conf = { ESP_ERROR_CHECK(uart_set_pin(config->uart_port,
config->tx_pin,
config->rx_pin,
UART_PIN_NO_CHANGE,
UART_PIN_NO_CHANGE));
// Re-configure PPS for Interrupts (Posedge)
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_POSEDGE, .intr_type = GPIO_INTR_POSEDGE,
.mode = GPIO_MODE_INPUT, .mode = GPIO_MODE_INPUT,
.pin_bit_mask = (1ULL << config->pps_pin), .pin_bit_mask = (1ULL << config->pps_pin),
.pull_up_en = GPIO_PULLUP_DISABLE, .pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE,
}; };
ESP_ERROR_CHECK(gpio_config(&pps_intr_conf)); ESP_ERROR_CHECK(gpio_config(&io_conf));
gpio_install_isr_service(0); gpio_install_isr_service(0);
ESP_ERROR_CHECK(gpio_isr_handler_add(config->pps_pin, pps_isr_handler, NULL)); ESP_ERROR_CHECK(gpio_isr_handler_add(config->pps_pin, pps_isr_handler, NULL));
xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL); xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL);
ESP_LOGI(TAG, "GPS sync initialized (UART=%d, RX=%d, TX=%d, PPS=%d)",
config->uart_port, config->rx_pin, config->tx_pin, config->pps_pin);
} }
gps_timestamp_t gps_get_timestamp(void) { gps_timestamp_t gps_get_timestamp(void) {
gps_timestamp_t ts; gps_timestamp_t ts;
clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts); clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts);
xSemaphoreTake(sync_mutex, portMAX_DELAY);
ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL + ts.mono_ts.tv_nsec / 1000; ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL + ts.mono_ts.tv_nsec / 1000;
ts.monotonic_ms = ts.monotonic_us / 1000; ts.monotonic_ms = ts.monotonic_us / 1000;
xSemaphoreTake(sync_mutex, portMAX_DELAY);
ts.gps_us = ts.monotonic_us + monotonic_offset_us; ts.gps_us = ts.monotonic_us + monotonic_offset_us;
ts.gps_ms = ts.gps_us / 1000;
ts.synced = gps_has_fix; ts.synced = gps_has_fix;
xSemaphoreGive(sync_mutex); xSemaphoreGive(sync_mutex);
ts.gps_ms = ts.gps_us / 1000;
return ts; return ts;
} }
int64_t gps_get_monotonic_ms(void) { int64_t gps_get_monotonic_ms(void) {
return esp_timer_get_time() / 1000; struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec * 1000LL + ts.tv_nsec / 1000000;
} }
bool gps_is_synced(void) { bool gps_is_synced(void) {
return gps_has_fix; return gps_has_fix;
} }
// --- NEW: PPS Age Getter ---
int64_t gps_get_pps_age_ms(void) {
if (last_pps_monotonic == 0) return -1;
int64_t now = esp_timer_get_time();
return (now - last_pps_monotonic) / 1000;
}
// ---------------- LOGGING SYSTEM INTERCEPTION ---------------- // ---------------- LOGGING SYSTEM INTERCEPTION ----------------
uint32_t gps_log_timestamp(void) { uint32_t gps_log_timestamp(void) {
@ -304,19 +269,14 @@ int gps_log_vprintf(const char *fmt, va_list args) {
if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) { if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) {
char reformatted[512]; char reformatted[512];
size_t prefix_len = timestamp_start - buffer; size_t prefix_len = timestamp_start - buffer;
if (prefix_len > sizeof(reformatted)) prefix_len = sizeof(reformatted);
memcpy(reformatted, buffer, prefix_len); memcpy(reformatted, buffer, prefix_len);
int decimal_len = 0; int decimal_len = 0;
if (gps_has_fix) { if (gps_has_fix) {
int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000; int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000;
int64_t log_gps_us = log_mono_us + monotonic_offset_us; int64_t log_gps_us = log_mono_us + monotonic_offset_us;
uint64_t gps_sec = log_gps_us / 1000000; uint64_t gps_sec = log_gps_us / 1000000;
uint32_t gps_ms = (log_gps_us % 1000000) / 1000; uint32_t gps_ms = (log_gps_us % 1000000) / 1000;
decimal_len = snprintf(reformatted + prefix_len, decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len, sizeof(reformatted) - prefix_len,
"+%" PRIu64 ".%03lu", gps_sec, gps_ms); "+%" PRIu64 ".%03lu", gps_sec, gps_ms);
@ -325,7 +285,7 @@ int gps_log_vprintf(const char *fmt, va_list args) {
uint32_t ms = monotonic_log_ms % 1000; uint32_t ms = monotonic_log_ms % 1000;
decimal_len = snprintf(reformatted + prefix_len, decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len, sizeof(reformatted) - prefix_len,
"*%lu.%03lu", (unsigned long)sec, (unsigned long)ms); "*%lu.%03lu", sec, ms);
} }
strcpy(reformatted + prefix_len + decimal_len, timestamp_end); strcpy(reformatted + prefix_len + decimal_len, timestamp_end);
return printf("%s", reformatted); return printf("%s", reformatted);

View File

@ -23,16 +23,8 @@ typedef struct {
void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps); void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps);
void gps_force_next_update(void); void gps_force_next_update(void);
// --- Getters ---
gps_timestamp_t gps_get_timestamp(void); gps_timestamp_t gps_get_timestamp(void);
int64_t gps_get_monotonic_ms(void); int64_t gps_get_monotonic_ms(void);
bool gps_is_synced(void); bool gps_is_synced(void);
// Check health of the physical PPS signal
int64_t gps_get_pps_age_ms(void);
void gps_get_last_nmea(char *buf, size_t max_len);
// --- Logging Hooks ---
uint32_t gps_log_timestamp(void); uint32_t gps_log_timestamp(void);
int gps_log_vprintf(const char *fmt, va_list args); int gps_log_vprintf(const char *fmt, va_list args);

View File

@ -23,20 +23,6 @@
static const char *TAG = "iperf"; static const char *TAG = "iperf";
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PPS "iperf_pps"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
// --- Global Config State ---
static iperf_cfg_t s_staging_cfg = {0}; // The "Running" Config
static bool s_staging_initialized = false;
static EventGroupHandle_t s_iperf_event_group = NULL; static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0) #define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1) #define IPERF_STOP_REQ_BIT (1 << 1)
@ -44,7 +30,6 @@ static EventGroupHandle_t s_iperf_event_group = NULL;
#define RATE_CHECK_INTERVAL_US 500000 #define RATE_CHECK_INTERVAL_US 500000
#define MIN_PACING_INTERVAL_US 100 #define MIN_PACING_INTERVAL_US 100
// --- Runtime Control ---
typedef struct { typedef struct {
iperf_cfg_t cfg; iperf_cfg_t cfg;
bool finish; bool finish;
@ -52,17 +37,20 @@ typedef struct {
uint8_t *buffer; uint8_t *buffer;
} iperf_ctrl_t; } iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0}; // The "Active" Config (while task runs) static iperf_ctrl_t s_iperf_ctrl = {0};
static TaskHandle_t s_iperf_task_handle = NULL; static TaskHandle_t s_iperf_task_handle = NULL;
static bool s_reload_req = false; static iperf_cfg_t s_next_cfg; // Holding area for the new config
static bool s_reload_req = false; // Flag to trigger internal restart
// Global Stats Tracker // Global Stats Tracker
static iperf_stats_t s_stats = {0}; static iperf_stats_t s_stats = {0};
// --- Session Persistence Variables ---
static int64_t s_session_start_time = 0; static int64_t s_session_start_time = 0;
static int64_t s_session_end_time = 0; static int64_t s_session_end_time = 0;
static uint64_t s_session_packets = 0; static uint64_t s_session_packets = 0;
// --- FSM State & Stats --- // --- State Duration & Edge Counters ---
typedef enum { typedef enum {
IPERF_STATE_IDLE = 0, IPERF_STATE_IDLE = 0,
IPERF_STATE_TX, IPERF_STATE_TX,
@ -70,8 +58,6 @@ typedef enum {
IPERF_STATE_TX_STALLED IPERF_STATE_TX_STALLED
} iperf_fsm_state_t; } iperf_fsm_state_t;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static int64_t s_time_tx_us = 0; static int64_t s_time_tx_us = 0;
static int64_t s_time_slow_us = 0; static int64_t s_time_slow_us = 0;
static int64_t s_time_stalled_us = 0; static int64_t s_time_stalled_us = 0;
@ -80,207 +66,35 @@ static uint32_t s_edge_tx = 0;
static uint32_t s_edge_slow = 0; static uint32_t s_edge_slow = 0;
static uint32_t s_edge_stalled = 0; static uint32_t s_edge_stalled = 0;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static esp_event_handler_instance_t instance_any_id; static esp_event_handler_instance_t instance_any_id;
static esp_event_handler_instance_t instance_got_ip; static esp_event_handler_instance_t instance_got_ip;
// --- Packet Structures --- // --- Helper: Pattern Initialization ---
typedef struct { // Fills buffer with 0-9 cyclic ASCII pattern (matches iperf2 "pattern" function)
int32_t id; static void iperf_pattern(uint8_t *buf, uint32_t len) {
uint32_t tv_sec; for (uint32_t i = 0; i < len; i++) {
uint32_t tv_usec; buf[i] = (i % 10) + '0';
int32_t id2;
} udp_datagram;
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- Helper: Defaults ---
static void set_defaults(iperf_cfg_t *cfg) {
memset(cfg, 0, sizeof(iperf_cfg_t));
cfg->flag = IPERF_FLAG_CLIENT | IPERF_FLAG_UDP;
cfg->dip = 0; // 0.0.0.0
cfg->dport = IPERF_DEFAULT_PORT;
cfg->time = 0; // Infinite
cfg->target_pps = 100; // Default 100 PPS
cfg->burst_count = 1;
cfg->send_len = IPERF_UDP_TX_LEN;
}
// --- Parameter Management (Init / Load / Save / Get / Set) ---
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
// Clear NVS
void iperf_param_clear(void) {
nvs_handle_t h;
if (nvs_open("storage", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, NVS_KEY_IPERF_PPS);
nvs_erase_key(h, NVS_KEY_IPERF_BURST);
nvs_erase_key(h, NVS_KEY_IPERF_LEN);
nvs_erase_key(h, NVS_KEY_IPERF_PORT);
nvs_erase_key(h, NVS_KEY_IPERF_DST_IP);
nvs_commit(h);
nvs_close(h);
ESP_LOGI(TAG, "iPerf NVS configuration cleared.");
}
// Reset RAM to defaults to match the "Empty" NVS state
set_defaults(&s_staging_cfg);
}
void iperf_param_init(void) {
if (s_staging_initialized) return;
set_defaults(&s_staging_cfg);
// Load from NVS
nvs_handle_t h;
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
ESP_LOGI(TAG, "Loading saved config from NVS...");
uint32_t val;
// Direct Load: No conversion needed
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK && val > 0) {
s_staging_cfg.target_pps = val;
}
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) s_staging_cfg.burst_count = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) s_staging_cfg.send_len = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) s_staging_cfg.dport = (uint16_t)val;
size_t req;
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
s_staging_cfg.dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(h);
} else {
ESP_LOGI(TAG, "No saved config found, using defaults.");
}
s_staging_initialized = true;
}
void iperf_param_get(iperf_cfg_t *out_cfg) {
if (!s_staging_initialized) iperf_param_init();
*out_cfg = s_staging_cfg;
}
void iperf_param_set(const iperf_cfg_t *new_cfg) {
if (!s_staging_initialized) iperf_param_init();
// Update Staging
s_staging_cfg = *new_cfg;
// Hot Reload Logic
if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Hot reloading parameters...");
s_iperf_ctrl.cfg = s_staging_cfg;
s_reload_req = true;
// Stop current internal loop to pick up new config
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} }
} }
// --- Dirty Check --- // --- Helper: Generate Client Header ---
bool iperf_param_is_unsaved(void) { // Modified to set all zeros except HEADER_SEQNO64B
if (!s_staging_initialized) return false; static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
// Zero out the entire structure
memset(hdr, 0, sizeof(client_hdr_v1));
nvs_handle_t h; // Set only the SEQNO64B flag (Server will detect 64-bit seqno in UDP header)
if (nvs_open("storage", NVS_READONLY, &h) != ESP_OK) return false; hdr->flags = htonl(HEADER_SEQNO64B);
uint32_t val;
bool match = true;
// Direct Compare: No conversion needed
uint32_t saved_pps = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK) saved_pps = val;
if (s_staging_cfg.target_pps != saved_pps) match = false;
// Standard Fields
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) { if (s_staging_cfg.burst_count != val) match = false; }
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) { if (s_staging_cfg.send_len != val) match = false; }
uint32_t saved_port = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) saved_port = val;
if (s_staging_cfg.dport != (uint16_t)saved_port) match = false;
// IP String
size_t req;
char staging_ip[32];
struct in_addr daddr; daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, staging_ip, sizeof(staging_ip));
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *saved_ip = malloc(req);
if (saved_ip) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, saved_ip, &req);
trim_whitespace(saved_ip);
if (strcmp(saved_ip, staging_ip) != 0) match = false;
free(saved_ip);
}
} else {
if (s_staging_cfg.dip != 0) match = false;
}
nvs_close(h);
return !match;
} }
// --- Save with Check --- // ... [Existing Status Reporting & Event Handler Code] ...
esp_err_t iperf_param_save(bool *out_changed) {
if (out_changed) *out_changed = false;
if (!iperf_param_is_unsaved()) {
ESP_LOGI(TAG, "Config matches NVS. No write needed.");
return ESP_OK;
}
nvs_handle_t h;
esp_err_t err = nvs_open("storage", NVS_READWRITE, &h);
if (err != ESP_OK) return err;
// Direct Save: No conversion needed
nvs_set_u32(h, NVS_KEY_IPERF_PPS, s_staging_cfg.target_pps);
nvs_set_u32(h, NVS_KEY_IPERF_BURST, s_staging_cfg.burst_count);
nvs_set_u32(h, NVS_KEY_IPERF_LEN, s_staging_cfg.send_len);
nvs_set_u32(h, NVS_KEY_IPERF_PORT, (uint32_t)s_staging_cfg.dport);
char ip_str[32];
struct in_addr daddr;
daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, ip_str, sizeof(ip_str));
nvs_set_str(h, NVS_KEY_IPERF_DST_IP, ip_str);
err = nvs_commit(h);
if (err == ESP_OK && out_changed) *out_changed = true;
nvs_close(h);
return err;
}
// --- Status & Helpers ---
void iperf_get_stats(iperf_stats_t *stats) { void iperf_get_stats(iperf_stats_t *stats) {
if (stats) { if (stats) {
s_stats.config_pps = s_iperf_ctrl.cfg.target_pps; s_stats.config_pps = (s_iperf_ctrl.cfg.pacing_period_us > 0) ?
(1000000 / s_iperf_ctrl.cfg.pacing_period_us) : 0;
*stats = s_stats; *stats = s_stats;
} }
} }
@ -288,24 +102,29 @@ void iperf_get_stats(iperf_stats_t *stats) {
void iperf_print_status(void) { void iperf_print_status(void) {
iperf_get_stats(&s_stats); iperf_get_stats(&s_stats);
// 1. Get Source IP
char src_ip[32] = "0.0.0.0";
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) {
inet_ntop(AF_INET, &ip_info.ip, src_ip, sizeof(src_ip));
}
}
// 2. Get Destination IP
char dst_ip[32] = "0.0.0.0"; char dst_ip[32] = "0.0.0.0";
struct in_addr daddr; struct in_addr daddr;
daddr.s_addr = s_iperf_ctrl.cfg.dip;
// Show active config if running, otherwise staging
if (s_stats.running) daddr.s_addr = s_iperf_ctrl.cfg.dip;
else daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip)); inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip));
// Calculate Percentages float err = 0.0f;
double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us); if (s_stats.running && s_stats.config_pps > 0) {
if (total_us < 1.0) total_us = 1.0; int32_t diff = (int32_t)s_stats.config_pps - (int32_t)s_stats.actual_pps;
err = (float)diff * 100.0f / (float)s_stats.config_pps;
}
double pct_tx = ((double)s_time_tx_us / total_us) * 100.0; // 3. Compute Session Bandwidth
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Bandwidth Calculation
float avg_bw_mbps = 0.0f; float avg_bw_mbps = 0.0f;
if (s_session_start_time > 0) { if (s_session_start_time > 0) {
int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time; int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time;
@ -318,32 +137,26 @@ void iperf_print_status(void) {
} }
} }
printf("IPERF: Dest=%s:%u, Pkts=%llu, BW=%.2f Mbps, Running=%d\n", // 4. Calculate State Percentages
dst_ip, double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us);
s_stats.running ? s_iperf_ctrl.cfg.dport : s_staging_cfg.dport, if (total_us < 1.0) total_us = 1.0;
s_session_packets,
avg_bw_mbps,
s_stats.running);
printf("STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n", double pct_tx = ((double)s_time_tx_us / total_us) * 100.0;
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Standard Stats
printf("IPERF_STATUS: Src=%s, Dst=%s, Running=%d, Config=%" PRIu32 ", Actual=%" PRIu32 ", Err=%.1f%%, Pkts=%" PRIu64 ", AvgBW=%.2f Mbps\n",
src_ip, dst_ip, s_stats.running, s_stats.config_pps, s_stats.actual_pps, err, s_session_packets, avg_bw_mbps);
// New Format: Time + Percentage + Edges
printf("IPERF_STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
(double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx, (double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx,
(double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow, (double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow,
(double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled); (double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled);
} }
// --- Core Logic --- // --- Network Events ---
static void iperf_pattern(uint8_t *buf, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
buf[i] = (i % 10) + '0';
}
}
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
memset(hdr, 0, sizeof(client_hdr_v1));
hdr->flags = htonl(HEADER_SEQNO64B);
}
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return; if (s_iperf_event_group == NULL) return;
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
@ -362,7 +175,7 @@ static bool iperf_wait_for_ip(void) {
if (netif) { if (netif) {
esp_netif_ip_info_t ip_info; esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) { if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
return true; xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
} }
} }
@ -375,21 +188,95 @@ static bool iperf_wait_for_ip(void) {
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id); esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip); esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
if (bits & IPERF_STOP_REQ_BIT) return false; if (bits & IPERF_STOP_REQ_BIT) {
ESP_LOGW(TAG, "Stop requested while waiting for IP");
return false;
}
ESP_LOGI(TAG, "IP Ready. Starting traffic.");
return true; return true;
} }
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
size_t req;
char buf[16];
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, buf, &req) == ESP_OK) {
if (strcmp(buf, "SERVER") == 0) cfg->flag |= IPERF_FLAG_SERVER;
else cfg->flag |= IPERF_FLAG_CLIENT;
}
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, buf, &req) == ESP_OK) {
if (strcmp(buf, "TCP") == 0) cfg->flag |= IPERF_FLAG_TCP;
else cfg->flag |= IPERF_FLAG_UDP;
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
cfg->dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
printf("IPERF_PPS_UPDATED: %" PRIu32 "\n", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) { static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) return ESP_OK; if (!iperf_wait_for_ip()) {
printf("IPERF_STOPPED\n");
return ESP_OK;
}
struct sockaddr_in addr; struct sockaddr_in addr;
addr.sin_family = AF_INET; addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport); addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001);
addr.sin_addr.s_addr = ctrl->cfg.dip; addr.sin_addr.s_addr = ctrl->cfg.dip;
char ip_str[32];
inet_ntop(AF_INET, &addr.sin_addr, ip_str, sizeof(ip_str));
ESP_LOGI(TAG, "Client sending to %s:%d", ip_str, ntohs(addr.sin_port));
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) { if (sockfd < 0) {
ESP_LOGE(TAG, "Socket failed: %d", errno); status_led_set_state(LED_STATE_FAILED);
ESP_LOGE(TAG, "Socket creation failed: %d", errno);
printf("IPERF_STOPPED\n");
return ESP_FAIL; return ESP_FAIL;
} }
@ -401,6 +288,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_stats.running = true; s_stats.running = true;
s_session_start_time = esp_timer_get_time(); s_session_start_time = esp_timer_get_time();
s_session_end_time = 0;
s_session_packets = 0; s_session_packets = 0;
// Reset FSM // Reset FSM
@ -408,33 +296,22 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0; s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0;
s_current_fsm_state = IPERF_STATE_IDLE; s_current_fsm_state = IPERF_STATE_IDLE;
ESP_LOGI(TAG, "UDP Started. Target: %s", inet_ntoa(addr.sin_addr)); printf("IPERF_STARTED\n");
int64_t next_send_time = esp_timer_get_time(); int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
int64_t last_rate_check = esp_timer_get_time(); int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0; uint32_t packets_since_check = 0;
int64_t packet_id = 0; int64_t packet_id = 0;
struct timespec ts; struct timespec ts;
// Calculate period based on PPS (Target Period) while (!ctrl->finish && esp_timer_get_time() < end_time) {
uint32_t period_us = (ctrl->cfg.target_pps > 0) ? (1000000 / ctrl->cfg.target_pps) : 10000;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
while (!ctrl->finish && !s_reload_req) {
int64_t now = esp_timer_get_time(); int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now; int64_t wait = next_send_time - now;
// 1. Sleep if gap is large if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000));
if (wait > 2000) { else while (esp_timer_get_time() < next_send_time) taskYIELD();
vTaskDelay(pdMS_TO_TICKS(wait / 1000));
}
// 2. Spin until exact time (Strict Monotonic enforcement)
while (esp_timer_get_time() < next_send_time) {
taskYIELD();
}
if (xEventGroupGetBits(s_iperf_event_group) & IPERF_STOP_REQ_BIT) break;
for (int k = 0; k < ctrl->cfg.burst_count; k++) { for (int k = 0; k < ctrl->cfg.burst_count; k++) {
int64_t current_id = packet_id++; int64_t current_id = packet_id++;
@ -446,108 +323,142 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec); udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000); udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000);
if (sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)) > 0) { int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
s_session_packets++;
if (sent > 0) {
packets_since_check++; packets_since_check++;
s_session_packets++;
} else {
// --- ROBUST FIX: Never Abort ---
// If send fails (buffer full, routing issue, etc.), we just yield and retry next loop.
// We do NOT goto exit.
if (errno != 12) {
// Log rarely to avoid spamming serial
if ((packet_id % 100) == 0) {
ESP_LOGW(TAG, "Send error: %d (Ignored)", errno);
}
}
vTaskDelay(pdMS_TO_TICKS(10));
} }
} }
// FSM STATS LOGIC
now = esp_timer_get_time(); now = esp_timer_get_time();
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) { if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
uint32_t interval_us = (uint32_t)(now - last_rate_check); uint32_t interval_us = (uint32_t)(now - last_rate_check);
if (interval_us > 0) { if (interval_us > 0) {
s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us); s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us);
uint32_t threshold = (ctrl->cfg.target_pps * 3) / 4; uint32_t config_pps = iperf_get_pps();
uint32_t threshold = (config_pps * 3) / 4;
iperf_fsm_state_t next_state; iperf_fsm_state_t next_state;
if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED; if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED;
else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX; else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX;
else next_state = IPERF_STATE_TX_SLOW; else next_state = IPERF_STATE_TX_SLOW;
switch (next_state) { switch (next_state) {
case IPERF_STATE_TX: s_time_tx_us += interval_us; break; case IPERF_STATE_TX: s_time_tx_us += interval_us; break;
case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break; case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break;
case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break; case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break;
default: break; default: break;
} }
if (next_state != s_current_fsm_state) { if (next_state != s_current_fsm_state) {
switch (next_state) { switch (next_state) {
case IPERF_STATE_TX: s_edge_tx++; break; case IPERF_STATE_TX: s_edge_tx++; break;
case IPERF_STATE_TX_SLOW: s_edge_slow++; break; case IPERF_STATE_TX_SLOW: s_edge_slow++; break;
case IPERF_STATE_TX_STALLED: s_edge_stalled++; break; case IPERF_STATE_TX_STALLED: s_edge_stalled++; break;
default: break; default: break;
} }
s_current_fsm_state = next_state; s_current_fsm_state = next_state;
} }
led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW; led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW;
if (status_led_get_state() != led_target) status_led_set_state(led_target); if (status_led_get_state() != led_target) status_led_set_state(led_target);
} }
last_rate_check = now; last_rate_check = now;
packets_since_check = 0; packets_since_check = 0;
} }
next_send_time += ctrl->cfg.pacing_period_us;
// MONOTONIC UPDATE
next_send_time += period_us;
} }
udp_datagram *hdr = (udp_datagram *)ctrl->buffer;
int64_t final_id = -packet_id;
hdr->id = htonl((uint32_t)(final_id & 0xFFFFFFFF));
hdr->id2 = htonl((uint32_t)((final_id >> 32) & 0xFFFFFFFF));
clock_gettime(CLOCK_REALTIME, &ts);
hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
hdr->tv_usec = htonl(ts.tv_nsec / 1000);
for(int i=0; i<10; i++) {
sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
vTaskDelay(pdMS_TO_TICKS(2));
}
ESP_LOGI(TAG, "Sent termination packets (ID: %" PRId64 ")", final_id);
close(sockfd); close(sockfd);
s_stats.running = false; s_stats.running = false;
s_session_end_time = esp_timer_get_time(); s_session_end_time = esp_timer_get_time();
status_led_set_state(LED_STATE_CONNECTED); s_stats.actual_pps = 0;
status_led_set_state(LED_STATE_CONNECTED); // <--- This is your "Solid Green"
printf("IPERF_STOPPED\n");
return ESP_OK; return ESP_OK;
} }
static void iperf_task(void *arg) { static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg; iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
while (1) { do {
s_reload_req = false; s_reload_req = false;
ctrl->finish = false; ctrl->finish = false;
xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
iperf_start_udp_client(ctrl); if (ctrl->cfg.flag & IPERF_FLAG_UDP && ctrl->cfg.flag & IPERF_FLAG_CLIENT) {
iperf_start_udp_client(ctrl);
}
if (s_reload_req) { if (s_reload_req) {
ESP_LOGI(TAG, "Task reloading config..."); ESP_LOGI(TAG, "Hot reloading iperf task with new config...");
if (ctrl->buffer_len < ctrl->cfg.send_len + 128) { ctrl->cfg = s_next_cfg;
free(ctrl->buffer); vTaskDelay(pdMS_TO_TICKS(100));
ctrl->buffer_len = ctrl->cfg.send_len + 128;
ctrl->buffer = calloc(1, ctrl->buffer_len);
iperf_pattern(ctrl->buffer, ctrl->buffer_len);
}
} else {
break;
} }
}
} while (s_reload_req);
free(ctrl->buffer); free(ctrl->buffer);
s_iperf_task_handle = NULL; s_iperf_task_handle = NULL;
vTaskDelete(NULL); vTaskDelete(NULL);
} }
void iperf_start(void) { void iperf_start(iperf_cfg_t *cfg) {
if (!s_staging_initialized) iperf_param_init(); iperf_cfg_t new_cfg = *cfg;
iperf_read_nvs_config(&new_cfg);
if (new_cfg.send_len == 0) new_cfg.send_len = 1470;
if (new_cfg.pacing_period_us == 0) new_cfg.pacing_period_us = 10000;
if (new_cfg.burst_count == 0) new_cfg.burst_count = 1;
if (s_iperf_task_handle) { if (s_iperf_task_handle) {
ESP_LOGW(TAG, "Already running. Use 'set' to update parameters."); ESP_LOGI(TAG, "Task running. Staging hot reload.");
s_next_cfg = new_cfg;
s_reload_req = true;
iperf_stop();
printf("IPERF_RELOADING\n");
return; return;
} }
// Copy Staging -> Active s_iperf_ctrl.cfg = new_cfg;
s_iperf_ctrl.cfg = s_staging_cfg;
s_iperf_ctrl.finish = false; s_iperf_ctrl.finish = false;
// Allocate Buffer if (s_iperf_ctrl.buffer == NULL) {
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128; s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len); s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
}
// Initialize Buffer Pattern
if (s_iperf_ctrl.buffer) { if (s_iperf_ctrl.buffer) {
iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len); iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len);
} }
if (s_iperf_event_group == NULL) s_iperf_event_group = xEventGroupCreate(); if (s_iperf_event_group == NULL) {
s_iperf_event_group = xEventGroupCreate();
}
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle); xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
} }
@ -556,5 +467,7 @@ void iperf_stop(void) {
if (s_iperf_task_handle) { if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true; s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} else {
printf("IPERF_STOPPED\n");
} }
} }

View File

@ -11,7 +11,7 @@
#define IPERF_FLAG_TCP (1 << 2) #define IPERF_FLAG_TCP (1 << 2)
#define IPERF_FLAG_UDP (1 << 3) #define IPERF_FLAG_UDP (1 << 3)
// --- Standard Iperf2 Header Flags --- // --- Standard Iperf2 Header Flags (from payloads.h) ---
#define HEADER_VERSION1 0x80000000 #define HEADER_VERSION1 0x80000000
#define HEADER_EXTEND 0x40000000 #define HEADER_EXTEND 0x40000000
#define HEADER_UDPTESTS 0x20000000 #define HEADER_UDPTESTS 0x20000000
@ -21,18 +21,32 @@
#define IPERF_DEFAULT_PORT 5001 #define IPERF_DEFAULT_PORT 5001
#define IPERF_DEFAULT_INTERVAL 3 #define IPERF_DEFAULT_INTERVAL 3
#define IPERF_DEFAULT_TIME 30 #define IPERF_DEFAULT_TIME 30
#define IPERF_UDP_TX_LEN 1470 #define IPERF_TRAFFIC_TASK_PRIORITY 4
#define IPERF_REPORT_TASK_PRIORITY 5
#define IPERF_UDP_TX_LEN (1470)
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PERIOD "iperf_period"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
typedef struct { typedef struct {
uint32_t flag; uint32_t flag;
uint32_t dip; // Destination IP uint32_t dip;
uint16_t dport; // Destination Port uint16_t dport;
uint32_t time; // Duration (seconds), 0 = infinite uint32_t time;
uint32_t target_pps; // Packets Per Second (Replaces period) uint32_t pacing_period_us;
uint32_t burst_count; // Packets per RTOS tick uint32_t burst_count;
uint32_t send_len; // Packet payload length uint32_t send_len;
} iperf_cfg_t; } iperf_cfg_t;
// --- Stats Structure ---
typedef struct { typedef struct {
bool running; bool running;
uint32_t config_pps; uint32_t config_pps;
@ -40,29 +54,41 @@ typedef struct {
float error_rate; float error_rate;
} iperf_stats_t; } iperf_stats_t;
// --- Wire Formats (Strict Layout) ---
// 1. Basic UDP Datagram Header (16 bytes)
// Corresponds to 'struct UDP_datagram' in payloads.h
typedef struct {
int32_t id; // Lower 32 bits of seqno
uint32_t tv_sec; // Seconds
uint32_t tv_usec; // Microseconds
int32_t id2; // Upper 32 bits of seqno (when HEADER_SEQNO64B is set)
} udp_datagram;
// 2. Client Header V1 (Used for First Packet Exchange)
// Corresponds to 'struct client_hdr_v1' in payloads.h
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- API --- // --- API ---
// Initialization (Call this in app_main to load NVS) void iperf_init_led(led_strip_handle_t handle);
void iperf_param_init(void); void iperf_set_pps(uint32_t pps);
uint32_t iperf_get_pps(void);
// Parameter Management (Running Config) // Get snapshot of current stats
void iperf_param_get(iperf_cfg_t *out_cfg); void iperf_get_stats(iperf_stats_t *stats);
void iperf_param_set(const iperf_cfg_t *new_cfg);
// Save returns true if NVS was actually updated // Print formatted status to stdout (for CLI/Python)
esp_err_t iperf_param_save(bool *out_changed);
// Check if dirty
bool iperf_param_is_unsaved(void);
// Control
void iperf_start(void); // Uses current Running Config
void iperf_stop(void);
void iperf_print_status(void); void iperf_print_status(void);
// Utils void iperf_start(iperf_cfg_t *cfg);
void iperf_init_led(led_strip_handle_t handle); void iperf_stop(void);
// Erase NVS and reset RAM defaults
void iperf_param_clear(void);
#endif #endif

View File

@ -5,8 +5,6 @@
#include "led_strip.h" #include "led_strip.h"
#include "esp_log.h" #include "esp_log.h"
static const char *TAG = "status_led";
static led_strip_handle_t s_led_strip = NULL; static led_strip_handle_t s_led_strip = NULL;
static bool s_is_rgb = false; static bool s_is_rgb = false;
static int s_gpio_pin = -1; static int s_gpio_pin = -1;
@ -17,7 +15,6 @@ static void set_color(uint8_t r, uint8_t g, uint8_t b) {
led_strip_set_pixel(s_led_strip, 0, r, g, b); led_strip_set_pixel(s_led_strip, 0, r, g, b);
led_strip_refresh(s_led_strip); led_strip_refresh(s_led_strip);
} else if (!s_is_rgb && s_gpio_pin >= 0) { } else if (!s_is_rgb && s_gpio_pin >= 0) {
// Simple LED: On if any color component is > 0
gpio_set_level(s_gpio_pin, (r+g+b) > 0); gpio_set_level(s_gpio_pin, (r+g+b) > 0);
} }
} }
@ -26,40 +23,33 @@ static void led_task(void *arg) {
int toggle = 0; int toggle = 0;
while (1) { while (1) {
switch (s_current_state) { switch (s_current_state) {
case LED_STATE_NO_CONFIG: // Yellow (Solid for RGB, Blink for Single) case LED_STATE_NO_CONFIG: // Yellow
if (s_is_rgb) { set_color(20, 20, 0); vTaskDelay(pdMS_TO_TICKS(1000)); } if (s_is_rgb) { set_color(25, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000)); }
else { set_color(1,1,1); vTaskDelay(pdMS_TO_TICKS(100)); set_color(0,0,0); vTaskDelay(pdMS_TO_TICKS(100)); } else { set_color(1,1,1); vTaskDelay(100); set_color(0,0,0); vTaskDelay(100); }
break; break;
case LED_STATE_WAITING: // Blue Blink (Searching) case LED_STATE_WAITING: // Blue Blink
set_color(0, 0, toggle ? 50 : 0); set_color(0, 0, toggle ? 50 : 0); toggle = !toggle;
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
break; break;
case LED_STATE_CONNECTED: // Green Solid (Idle) case LED_STATE_CONNECTED: // Green Solid
set_color(0, 20, 0); set_color(0, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000));
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_MONITORING: // Blue Solid (Sniffer Mode) case LED_STATE_MONITORING: // Blue Solid
set_color(0, 0, 50); set_color(0, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000));
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_TRANSMITTING: // Fast Purple Flash (Busy) case LED_STATE_TRANSMITTING: // Fast Purple (Busy)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle;
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(50)); vTaskDelay(pdMS_TO_TICKS(50));
break; break;
case LED_STATE_TRANSMITTING_SLOW: // Slow Purple Pulse (Pacing) case LED_STATE_TRANSMITTING_SLOW: // Slow Purple (Relaxed)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle;
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(250)); vTaskDelay(pdMS_TO_TICKS(250));
break; break;
case LED_STATE_STALLED: // Purple Solid (Stalled) case LED_STATE_STALLED: // Purple Solid
set_color(50, 0, 50); set_color(50, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000));
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_FAILED: // Red Blink (Error) case LED_STATE_FAILED: // Red Blink
set_color(toggle ? 50 : 0, 0, 0); set_color(toggle ? 50 : 0, 0, 0); toggle = !toggle;
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(200)); vTaskDelay(pdMS_TO_TICKS(200));
break; break;
} }
@ -69,34 +59,15 @@ static void led_task(void *arg) {
void status_led_init(int gpio_pin, bool is_rgb_strip) { void status_led_init(int gpio_pin, bool is_rgb_strip) {
s_gpio_pin = gpio_pin; s_gpio_pin = gpio_pin;
s_is_rgb = is_rgb_strip; s_is_rgb = is_rgb_strip;
ESP_LOGI(TAG, "Initializing LED on GPIO %d (RGB=%d)", gpio_pin, is_rgb_strip);
if (s_is_rgb) { if (s_is_rgb) {
led_strip_config_t s_cfg = { led_strip_config_t s_cfg = { .strip_gpio_num = gpio_pin, .max_leds = 1 };
.strip_gpio_num = gpio_pin, led_strip_rmt_config_t r_cfg = { .resolution_hz = 10 * 1000 * 1000 };
.max_leds = 1, led_strip_new_rmt_device(&s_cfg, &r_cfg, &s_led_strip);
.led_pixel_format = LED_PIXEL_FORMAT_GRB, // Standard for WS2812
.led_model = LED_MODEL_WS2812, // Specific model
.flags.invert_out = false,
};
led_strip_rmt_config_t r_cfg = {
.resolution_hz = 10 * 1000 * 1000, // 10MHz
.flags.with_dma = false,
};
esp_err_t ret = led_strip_new_rmt_device(&s_cfg, &r_cfg, &s_led_strip);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to create RMT LED strip: %s", esp_err_to_name(ret));
return;
}
led_strip_clear(s_led_strip); led_strip_clear(s_led_strip);
} else { } else {
gpio_reset_pin(gpio_pin); gpio_reset_pin(gpio_pin);
gpio_set_direction(gpio_pin, GPIO_MODE_OUTPUT); gpio_set_direction(gpio_pin, GPIO_MODE_OUTPUT);
gpio_set_level(gpio_pin, 0);
} }
xTaskCreate(led_task, "led_task", 2048, NULL, 5, NULL); xTaskCreate(led_task, "led_task", 2048, NULL, 5, NULL);
} }

View File

@ -52,30 +52,6 @@ void wifi_cfg_set_dhcp(bool enable) {
nvs_write_u8("dhcp", enable ? 1 : 0); nvs_write_u8("dhcp", enable ? 1 : 0);
} }
// --- Clearing ---
void wifi_cfg_clear_credentials(void) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, "ssid");
nvs_erase_key(h, "pass");
nvs_erase_key(h, "ip");
nvs_erase_key(h, "mask");
nvs_erase_key(h, "gw");
nvs_erase_key(h, "dhcp");
nvs_commit(h);
nvs_close(h);
}
}
void wifi_cfg_clear_monitor_channel(void) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, "mon_ch");
nvs_commit(h);
nvs_close(h);
}
}
// --- Init & Load --- // --- Init & Load ---
void wifi_cfg_init(void) { void wifi_cfg_init(void) {
@ -178,38 +154,3 @@ bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch) {
nvs_close(h); nvs_close(h);
return true; return true;
} }
// --- State Checkers ---
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READONLY, &h) != ESP_OK) return true; // Assume dirty if error
uint8_t nvs_val = 0;
esp_err_t err = nvs_get_u8(h, "mon_ch", &nvs_val);
nvs_close(h);
if (err != ESP_OK) return true; // Key missing = dirty (using default)
return (nvs_val != ram_value);
}
// --- Setters ---
bool wifi_cfg_set_monitor_channel(uint8_t channel) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) != ESP_OK) return false;
uint8_t current = 0;
// Check if write is necessary
if (nvs_get_u8(h, "mon_ch", &current) == ESP_OK) {
if (current == channel) {
nvs_close(h);
return false; // No change needed
}
}
nvs_set_u8(h, "mon_ch", channel);
nvs_commit(h);
nvs_close(h);
return true; // Write occurred
}

View File

@ -1,4 +1,3 @@
#ifndef WIFI_CFG_H #ifndef WIFI_CFG_H
#define WIFI_CFG_H #define WIFI_CFG_H
@ -12,28 +11,17 @@ extern "C" {
// --- Initialization --- // --- Initialization ---
void wifi_cfg_init(void); void wifi_cfg_init(void);
// --- Getters --- // --- Getters (Used by Controller) ---
bool wifi_cfg_apply_from_nvs(void); bool wifi_cfg_apply_from_nvs(void);
wifi_ps_type_t wifi_cfg_get_power_save_mode(void); wifi_ps_type_t wifi_cfg_get_power_save_mode(void);
bool wifi_cfg_get_bandwidth(char *buf, size_t buf_size); bool wifi_cfg_get_bandwidth(char *buf, size_t buf_size);
bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch); bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch);
// --- State Checkers (Dirty Flag) --- // --- Setters (Used by Console) ---
// Returns true if RAM value differs from NVS
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value);
// --- Setters ---
void wifi_cfg_set_credentials(const char* ssid, const char* pass); void wifi_cfg_set_credentials(const char* ssid, const char* pass);
void wifi_cfg_set_static_ip(const char* ip, const char* mask, const char* gw); void wifi_cfg_set_static_ip(const char* ip, const char* mask, const char* gw);
void wifi_cfg_set_dhcp(bool enable); void wifi_cfg_set_dhcp(bool enable);
// Returns true if NVS was actually updated, false if values were identical
bool wifi_cfg_set_monitor_channel(uint8_t channel);
// --- Clearing ---
void wifi_cfg_clear_credentials(void);
void wifi_cfg_clear_monitor_channel(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -1,4 +1,4 @@
idf_component_register(SRCS "wifi_controller.c" idf_component_register(SRCS "wifi_controller.c"
INCLUDE_DIRS "." INCLUDE_DIRS "."
REQUIRES esp_wifi freertos REQUIRES esp_wifi freertos
PRIV_REQUIRES csi_manager iperf status_led wifi_monitor wifi_cfg gps_sync log esp_netif) PRIV_REQUIRES csi_manager iperf status_led wifi_monitor gps_sync log esp_netif)

View File

@ -3,9 +3,7 @@
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_wifi.h" #include "esp_wifi.h"
#include "esp_event.h" // Added
#include "inttypes.h" #include "inttypes.h"
#include "wifi_cfg.h"
// Dependencies // Dependencies
#include "iperf.h" #include "iperf.h"
@ -13,6 +11,7 @@
#include "wifi_monitor.h" #include "wifi_monitor.h"
#include "gps_sync.h" #include "gps_sync.h"
// 1. GUARDED INCLUDE
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_manager.h" #include "csi_manager.h"
#endif #endif
@ -21,35 +20,33 @@ static const char *TAG = "WIFI_CTL";
static wifi_ctl_mode_t s_current_mode = WIFI_CTL_MODE_STA; static wifi_ctl_mode_t s_current_mode = WIFI_CTL_MODE_STA;
static uint8_t s_monitor_channel = 6; static uint8_t s_monitor_channel = 6;
static uint8_t s_monitor_channel_staging = 6;
static bool s_monitor_enabled = false; static bool s_monitor_enabled = false;
static uint32_t s_monitor_frame_count = 0; static uint32_t s_monitor_frame_count = 0;
static TaskHandle_t s_monitor_stats_task_handle = NULL; static TaskHandle_t s_monitor_stats_task_handle = NULL;
// --- Event Handler --- // --- Helper: Log Collapse Events ---
static void wifi_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "Got IP -> LED Connected");
status_led_set_state(LED_STATE_CONNECTED);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
status_led_set_state(LED_STATE_NO_CONFIG); // Or WAITING if retrying
}
}
// ... [Helper: Log Collapse Events (Same as before)] ...
static void log_collapse_event(float nav_duration_us, int rssi, int retry) { static void log_collapse_event(float nav_duration_us, int rssi, int retry) {
gps_timestamp_t ts = gps_get_timestamp(); gps_timestamp_t ts = gps_get_timestamp();
// CSV Format: COLLAPSE,MonoMS,GpsMS,Synced,Duration,RSSI,Retry
printf("COLLAPSE,%" PRIi64 ",%" PRIi64 ",%d,%.2f,%d,%d\n", printf("COLLAPSE,%" PRIi64 ",%" PRIi64 ",%d,%.2f,%d,%d\n",
ts.monotonic_ms, ts.gps_ms, ts.synced ? 1 : 0, nav_duration_us, rssi, retry); ts.monotonic_ms,
ts.gps_ms,
ts.synced ? 1 : 0,
nav_duration_us,
rssi,
retry);
} }
// ... [Monitor Callbacks (Same as before)] ... // --- Monitor Callbacks & Tasks ---
static void monitor_frame_callback(const wifi_frame_info_t *frame, const uint8_t *payload, uint16_t len) { static void monitor_frame_callback(const wifi_frame_info_t *frame, const uint8_t *payload, uint16_t len) {
s_monitor_frame_count++; s_monitor_frame_count++;
// Check for Collapse conditions (High NAV + Retry)
if (frame->retry && frame->duration_id > 5000) { if (frame->retry && frame->duration_id > 5000) {
log_collapse_event((float)frame->duration_id, frame->rssi, frame->retry); log_collapse_event((float)frame->duration_id, frame->rssi, frame->retry);
} }
if (frame->duration_id > 30000) { if (frame->duration_id > 30000) {
ESP_LOGW("MONITOR", "⚠️ VERY HIGH NAV: %u us", frame->duration_id); ESP_LOGW("MONITOR", "⚠️ VERY HIGH NAV: %u us", frame->duration_id);
} }
@ -62,19 +59,26 @@ static void monitor_stats_task(void *arg) {
if (wifi_monitor_get_stats(&stats) == ESP_OK) { if (wifi_monitor_get_stats(&stats) == ESP_OK) {
ESP_LOGI("MONITOR", "--- Stats: %lu frames, Retry: %.2f%%, Avg NAV: %u us ---", ESP_LOGI("MONITOR", "--- Stats: %lu frames, Retry: %.2f%%, Avg NAV: %u us ---",
(unsigned long)stats.total_frames, stats.retry_rate, stats.avg_nav); (unsigned long)stats.total_frames, stats.retry_rate, stats.avg_nav);
if (wifi_monitor_is_collapsed()) ESP_LOGW("MONITOR", "⚠️ ⚠️ COLLAPSE DETECTED! ⚠️ ⚠️");
if (wifi_monitor_is_collapsed()) {
ESP_LOGW("MONITOR", "⚠️ ⚠️ COLLAPSE DETECTED! ⚠️ ⚠️");
}
} }
} }
} }
static void auto_monitor_task_func(void *arg) { static void auto_monitor_task_func(void *arg) {
uint8_t channel = (uint8_t)(uintptr_t)arg; uint8_t channel = (uint8_t)(uintptr_t)arg;
ESP_LOGI(TAG, "Waiting for WiFi connection before switching to monitor mode..."); ESP_LOGI(TAG, "Waiting for WiFi connection before switching to monitor mode...");
// Wait until LED indicates connected
while (status_led_get_state() != LED_STATE_CONNECTED) { while (status_led_get_state() != LED_STATE_CONNECTED) {
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
} }
ESP_LOGI(TAG, "WiFi connected, waiting for GPS sync (2s)..."); ESP_LOGI(TAG, "WiFi connected, waiting for GPS sync (2s)...");
vTaskDelay(pdMS_TO_TICKS(2000)); vTaskDelay(pdMS_TO_TICKS(2000));
ESP_LOGI(TAG, "Auto-switching to MONITOR mode on channel %d...", channel); ESP_LOGI(TAG, "Auto-switching to MONITOR mode on channel %d...", channel);
wifi_ctl_switch_to_monitor(channel, WIFI_BW_HT20); wifi_ctl_switch_to_monitor(channel, WIFI_BW_HT20);
vTaskDelete(NULL); vTaskDelete(NULL);
@ -86,72 +90,15 @@ void wifi_ctl_init(void) {
s_current_mode = WIFI_CTL_MODE_STA; s_current_mode = WIFI_CTL_MODE_STA;
s_monitor_enabled = false; s_monitor_enabled = false;
s_monitor_frame_count = 0; s_monitor_frame_count = 0;
// Register Event Handlers for LED feedback
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &wifi_event_handler, NULL, NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, WIFI_EVENT_STA_DISCONNECTED, &wifi_event_handler, NULL, NULL));
if (!wifi_cfg_apply_from_nvs()) {
ESP_LOGW(TAG, "No saved WiFi config found, driver initialized in defaults.");
status_led_set_state(LED_STATE_NO_CONFIG);
} else {
ESP_LOGI(TAG, "WiFi driver initialized from NVS.");
status_led_set_state(LED_STATE_WAITING); // Waiting for connection
}
// Load Staging Params
char mode_ignored[16];
wifi_cfg_get_mode(mode_ignored, &s_monitor_channel_staging);
if (s_monitor_channel_staging == 0) s_monitor_channel_staging = 6;
} }
// --- Parameter Management --- esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth) {
void wifi_ctl_param_set_monitor_channel(uint8_t channel) { if (s_current_mode == WIFI_CTL_MODE_MONITOR) {
if (channel >= 1 && channel <= 14) s_monitor_channel_staging = channel;
}
uint8_t wifi_ctl_param_get_monitor_channel(void) {
return s_monitor_channel_staging;
}
bool wifi_ctl_param_save(void) {
bool changed = wifi_cfg_set_monitor_channel(s_monitor_channel_staging);
if (changed) ESP_LOGI(TAG, "Monitor channel (%d) saved to NVS", s_monitor_channel_staging);
return changed;
}
void wifi_ctl_param_reload(void) {
char mode_ignored[16];
uint8_t ch = 0;
wifi_cfg_get_mode(mode_ignored, &ch);
if (ch > 0) s_monitor_channel_staging = ch;
ESP_LOGI(TAG, "Reloaded monitor channel: %d", s_monitor_channel_staging);
}
void wifi_ctl_param_clear(void) {
// 1. Erase NVS
wifi_cfg_clear_monitor_channel();
// 2. Reset RAM Staging to Default (6)
s_monitor_channel_staging = 6;
ESP_LOGI(TAG, "Monitor configuration cleared (Defaulting to Ch 6).");
}
bool wifi_ctl_param_is_unsaved(void) {
return wifi_cfg_monitor_channel_is_unsaved(s_monitor_channel_staging);
}
// --- Actions ---
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth) {
uint8_t channel = (channel_override > 0) ? channel_override : s_monitor_channel_staging;
if (s_current_mode == WIFI_CTL_MODE_MONITOR && s_monitor_channel == channel) {
ESP_LOGW(TAG, "Already in monitor mode"); ESP_LOGW(TAG, "Already in monitor mode");
return ESP_OK; return ESP_OK;
} }
// Monitor mode typically requires 20MHz
if (bandwidth != WIFI_BW_HT20) { if (bandwidth != WIFI_BW_HT20) {
ESP_LOGW(TAG, "Forcing bandwidth to 20MHz for monitor mode"); ESP_LOGW(TAG, "Forcing bandwidth to 20MHz for monitor mode");
bandwidth = WIFI_BW_HT20; bandwidth = WIFI_BW_HT20;
@ -159,17 +106,22 @@ esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t
ESP_LOGI(TAG, "Switching to MONITOR MODE (Ch %d)", channel); ESP_LOGI(TAG, "Switching to MONITOR MODE (Ch %d)", channel);
// 1. Stop high-level apps
iperf_stop(); iperf_stop();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 2. Disable CSI (hardware conflict)
// 2. GUARDED CALL
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
csi_mgr_disable(); csi_mgr_disable();
#endif #endif
// 3. Teardown Station
esp_wifi_disconnect(); esp_wifi_disconnect();
esp_wifi_stop(); esp_wifi_stop();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 4. Re-init in NULL/Promiscuous Mode
esp_wifi_set_mode(WIFI_MODE_NULL); esp_wifi_set_mode(WIFI_MODE_NULL);
if (wifi_monitor_init(channel, monitor_frame_callback) != ESP_OK) { if (wifi_monitor_init(channel, monitor_frame_callback) != ESP_OK) {
@ -184,6 +136,7 @@ esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t
return ESP_FAIL; return ESP_FAIL;
} }
// 5. Update State
s_monitor_enabled = true; s_monitor_enabled = true;
s_current_mode = WIFI_CTL_MODE_MONITOR; s_current_mode = WIFI_CTL_MODE_MONITOR;
s_monitor_channel = channel; s_monitor_channel = channel;
@ -204,29 +157,34 @@ esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode) {
ESP_LOGI(TAG, "Switching to STA MODE"); ESP_LOGI(TAG, "Switching to STA MODE");
// 1. Stop Monitor Tasks
if (s_monitor_stats_task_handle != NULL) { if (s_monitor_stats_task_handle != NULL) {
vTaskDelete(s_monitor_stats_task_handle); vTaskDelete(s_monitor_stats_task_handle);
s_monitor_stats_task_handle = NULL; s_monitor_stats_task_handle = NULL;
} }
// 2. Stop Monitor Driver
if (s_monitor_enabled) { if (s_monitor_enabled) {
wifi_monitor_stop(); wifi_monitor_stop();
s_monitor_enabled = false; s_monitor_enabled = false;
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
} }
// 3. Re-enable Station Mode
esp_wifi_set_mode(WIFI_MODE_STA); esp_wifi_set_mode(WIFI_MODE_STA);
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 4. Configure & Connect
wifi_config_t wifi_config; wifi_config_t wifi_config;
esp_wifi_get_config(WIFI_IF_STA, &wifi_config); esp_wifi_get_config(WIFI_IF_STA, &wifi_config);
wifi_config.sta.channel = 0; wifi_config.sta.channel = 0; // Auto channel scan
esp_wifi_set_config(WIFI_IF_STA, &wifi_config); esp_wifi_set_config(WIFI_IF_STA, &wifi_config);
esp_wifi_start(); esp_wifi_start();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
esp_wifi_connect(); esp_wifi_connect();
// 5. Update State
s_current_mode = WIFI_CTL_MODE_STA; s_current_mode = WIFI_CTL_MODE_STA;
status_led_set_state(LED_STATE_WAITING); status_led_set_state(LED_STATE_WAITING);

View File

@ -2,7 +2,6 @@
#include "esp_err.h" #include "esp_err.h"
#include "esp_wifi.h" #include "esp_wifi.h"
#include <stdbool.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -13,24 +12,44 @@ typedef enum {
WIFI_CTL_MODE_MONITOR WIFI_CTL_MODE_MONITOR
} wifi_ctl_mode_t; } wifi_ctl_mode_t;
/**
* @brief Initialize the WiFi Controller
*/
void wifi_ctl_init(void); void wifi_ctl_init(void);
// --- Parameter Management --- /**
void wifi_ctl_param_set_monitor_channel(uint8_t channel); * @brief Switch operation mode to Monitor (Sniffer)
uint8_t wifi_ctl_param_get_monitor_channel(void); * @param channel WiFi channel (1-165)
bool wifi_ctl_param_save(void); * @param bandwidth Bandwidth (usually WIFI_BW_HT20 for monitor)
void wifi_ctl_param_reload(void); */
bool wifi_ctl_param_is_unsaved(void); esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth);
void wifi_ctl_param_clear(void);
// --- Actions --- /**
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth); * @brief Switch operation mode to Station (Client)
* @param band_mode Band preference (Auto, 2G only, 5G only)
*/
esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode); esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode);
/**
* @brief Start the auto-monitor task
* Waits for connection, waits for GPS, then switches to monitor mode.
* @param channel Channel to monitor
*/
void wifi_ctl_auto_monitor_start(uint8_t channel); void wifi_ctl_auto_monitor_start(uint8_t channel);
// --- Getters --- /**
* @brief Get current operation mode
*/
wifi_ctl_mode_t wifi_ctl_get_mode(void); wifi_ctl_mode_t wifi_ctl_get_mode(void);
/**
* @brief Get the current monitor channel
*/
uint8_t wifi_ctl_get_monitor_channel(void); uint8_t wifi_ctl_get_monitor_channel(void);
/**
* @brief Get total frames captured in monitor mode
*/
uint32_t wifi_ctl_get_monitor_frame_count(void); uint32_t wifi_ctl_get_monitor_frame_count(void);
#ifdef __cplusplus #ifdef __cplusplus

View File

@ -12,8 +12,6 @@ import logging
import glob import glob
import random import random
from pathlib import Path from pathlib import Path
from serial.tools import list_ports
import subprocess
# Ensure detection script is available # Ensure detection script is available
sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__)))
@ -58,35 +56,13 @@ def generate_config_suffix(target, csi, ampdu):
return f"{target}_{csi_str}_{ampdu_str}" return f"{target}_{csi_str}_{ampdu_str}"
def auto_detect_devices(): def auto_detect_devices():
"""Prioritizes static udev paths (/dev/esp_port_XX) and removes duplicates.""" """Prioritizes static udev paths (/dev/esp_port_XX) if they exist."""
try: try:
ports = glob.glob('/dev/esp_port_*') ports = glob.glob('/dev/esp_port_*')
if ports: if ports:
# --- New Deduplication Logic ---
unique_map = {}
for p in ports:
try:
# Resolve symlink (e.g., /dev/esp_port_01 -> /dev/ttyUSB0)
real_path = os.path.realpath(p)
if real_path not in unique_map:
unique_map[real_path] = p
else:
# Conflict! We have both esp_port_1 and esp_port_01.
# Keep the "shorter" one (esp_port_1) to match your new scheme.
current_alias = unique_map[real_path]
if len(p) < len(current_alias):
unique_map[real_path] = p
except OSError:
continue
# Use the filtered list
ports = list(unique_map.values())
# -------------------------------
# Sort by suffix number # Sort by suffix number
ports.sort(key=lambda x: int(re.search(r'(\d+)$', x).group(1)) if re.search(r'(\d+)$', x) else 0) ports.sort(key=lambda x: int(re.search(r'(\d+)$', x).group(1)) if re.search(r'(\d+)$', x) else 0)
print(f"{Colors.CYAN}Auto-detected {len(ports)} devices (filtered from {len(unique_map) + (len(glob.glob('/dev/esp_port_*')) - len(unique_map))} aliases).{Colors.RESET}") print(f"{Colors.CYAN}Auto-detected {len(ports)} devices using static udev rules.{Colors.RESET}")
return [type('obj', (object,), {'device': p}) for p in ports] return [type('obj', (object,), {'device': p}) for p in ports]
except Exception: except Exception:
pass pass
@ -368,81 +344,6 @@ class UnifiedDeployWorker:
self.log.error(f"Flash Prep Error: {e}") self.log.error(f"Flash Prep Error: {e}")
return False return False
def update_udev_map(dry_run=False):
"""
Scans all USB serial devices, sorts them by physical topology (Bus/Port),
and generates a udev rule file to map them to /dev/esp_port_XX.
"""
print(f"{Colors.BLUE}Scanning USB topology to generate stable port maps...{Colors.RESET}")
# Get all USB serial devices
devices = list(list_ports.grep("USB|ACM|CP210|FT232"))
if not devices:
print(f"{Colors.RED}No devices found.{Colors.RESET}")
return
# Sort by "location" (Physical USB path: e.g., 1-1.2.3)
# This guarantees esp_port_01 is always the first physical port.
devices.sort(key=lambda x: x.location if x.location else x.device)
generated_rules = []
print(f"{'Physical Path':<20} | {'Current Dev':<15} | {'Assigned Symlink'}")
print("-" * 65)
for i, dev in enumerate(devices):
port_num = i + 1
symlink = f"esp_port_{port_num}" # e.g., esp_port_1
# Get detailed udev info to find the stable physical path ID
try:
cmd = ['udevadm', 'info', '--name', dev.device, '--query=property']
proc = subprocess.run(cmd, capture_output=True, text=True)
props = dict(line.split('=', 1) for line in proc.stdout.splitlines() if '=' in line)
# ID_PATH is the robust physical identifier (e.g., pci-0000:00:14.0-usb-0:1.4.3:1.0)
dev_path = props.get('ID_PATH', '')
if not dev_path:
print(f"{Colors.YELLOW}Skipping {dev.device} (No ID_PATH found){Colors.RESET}")
continue
# Generate the rule
rule = f'SUBSYSTEM=="tty", ENV{{ID_PATH}}=="{dev_path}", SYMLINK+="{symlink}"'
generated_rules.append(rule)
print(f"{dev.location:<20} | {dev.device:<15} | {symlink}")
except Exception as e:
print(f"Error inspecting {dev.device}: {e}")
print("-" * 65)
rules_content = "# Auto-generated by esp32_deploy.py\n" + "\n".join(generated_rules) + "\n"
rule_file = "/etc/udev/rules.d/99-esp32-stable.rules"
if dry_run:
print(f"\n{Colors.YELLOW}--- DRY RUN: Rules that would be written to {rule_file} ---{Colors.RESET}")
print(rules_content)
else:
if os.geteuid() != 0:
print(f"\n{Colors.RED}ERROR: Root privileges required to write udev rules.{Colors.RESET}")
print(f"Run: sudo ./esp32_deploy.py --map-ports")
return
print(f"\nWriting rules to {rule_file}...")
try:
with open(rule_file, 'w') as f:
f.write(rules_content)
print("Reloading udev rules...")
subprocess.run(['udevadm', 'control', '--reload-rules'], check=True)
subprocess.run(['udevadm', 'trigger'], check=True)
print(f"{Colors.GREEN}Success! Devices re-mapped.{Colors.RESET}")
except Exception as e:
print(f"{Colors.RED}Failed to write rules: {e}{Colors.RESET}")
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description='ESP32 Unified Deployment Tool') parser = argparse.ArgumentParser(description='ESP32 Unified Deployment Tool')
parser.add_argument('-i', '--interactive', action='store_true', help='Prompt for build options') parser.add_argument('-i', '--interactive', action='store_true', help='Prompt for build options')
@ -479,9 +380,8 @@ def parse_args():
parser.add_argument('-M', '--mode', default='STA') parser.add_argument('-M', '--mode', default='STA')
parser.add_argument('-mc', '--monitor-channel', type=int, default=36) parser.add_argument('-mc', '--monitor-channel', type=int, default=36)
parser.add_argument('--csi', dest='csi_enable', action='store_true') parser.add_argument('--csi', dest='csi_enable', action='store_true')
parser.add_argument('--map-ports', action='store_true', help="Rescan USB topology and generate udev rules for esp_port_xx")
args = parser.parse_args() args = parser.parse_args()
if args.target != 'all' and not args.start_ip and not args.check_version and not args.map_ports: if args.target != 'all' and not args.start_ip and not args.check_version:
parser.error("the following arguments are required: --start-ip") parser.error("the following arguments are required: --start-ip")
if args.config_only and args.flash_only: parser.error("Conflicting modes") if args.config_only and args.flash_only: parser.error("Conflicting modes")
return args return args
@ -653,22 +553,9 @@ async def run_deployment(args):
print(f"\n{Colors.BLUE}Summary: {success}/{len(devs)} Success{Colors.RESET}") print(f"\n{Colors.BLUE}Summary: {success}/{len(devs)} Success{Colors.RESET}")
def main(): def main():
args = parse_args() if os.name == 'nt': asyncio.set_event_loop(asyncio.ProactorEventLoop())
try: asyncio.run(run_deployment(parse_args()))
# --- INTERCEPT --map-ports HERE --- except KeyboardInterrupt: sys.exit(1)
if args.map_ports:
# Run synchronously, no async loop needed
update_udev_map(dry_run=False)
sys.exit(0)
# Standard async deployment flow
if os.name == 'nt':
asyncio.set_event_loop(asyncio.ProactorEventLoop())
try:
asyncio.run(run_deployment(args))
except KeyboardInterrupt:
sys.exit(1)
if __name__ == '__main__': if __name__ == '__main__':
main() main()

View File

@ -2,47 +2,44 @@
#define BOARD_CONFIG_H #define BOARD_CONFIG_H
#include "sdkconfig.h" #include "sdkconfig.h"
#include "driver/gpio.h"
#if defined (CONFIG_IDF_TARGET_ESP32C5)
// ============================================================================ // ============================================================================
// ESP32-C5 (DevKitC-1) 3.3V VCC Pin 1 GND PIN 15 // ESP32-C5 (DevKitC-1)
// ============================================================================ // ============================================================================
#ifdef CONFIG_IDF_TARGET_ESP32C5
#define RGB_LED_GPIO 8 // Common addressable LED pin for C5 #define RGB_LED_GPIO 8 // Common addressable LED pin for C5
#define HAS_RGB_LED 1 #define HAS_RGB_LED 1
#define GPS_TX_PIN GPIO_NUM_24 #endif
#define GPS_RX_PIN GPIO_NUM_23
#define GPS_PPS_PIN GPIO_NUM_25
#elif defined (CONFIG_IDF_TARGET_ESP32S3)
// ============================================================================ // ============================================================================
// ESP32-S3 (DevKitC-1) // ESP32-S3 (DevKitC-1)
// Most S3 DevKits use GPIO 48 for the addressable RGB LED.
// If yours uses GPIO 38, change this value.
// ============================================================================ // ============================================================================
#define RGB_LED_GPIO 48 #ifdef CONFIG_IDF_TARGET_ESP32S3
#define HAS_RGB_LED 1 // Most S3 DevKits use GPIO 48 for the addressable RGB LED.
#define GPS_TX_PIN GPIO_NUM_5 // If yours uses GPIO 38, change this value.
#define GPS_RX_PIN GPIO_NUM_4 #define RGB_LED_GPIO 48
#define GPS_PPS_PIN GPIO_NUM_6 #define HAS_RGB_LED 1
#elif defined (CONFIG_IDF_TARGET_ESP32) #endif
// ============================================================================ // ============================================================================
// ESP32 (Original / Standard) // ESP32 (Original / Standard)
// Standard ESP32 DevKits usually have a single blue LED on GPIO 2.
// They rarely have an addressable RGB LED built-in.
// ============================================================================ // ============================================================================
#define RGB_LED_GPIO 2 // Standard Blue LED #ifdef CONFIG_IDF_TARGET_ESP32
#define HAS_RGB_LED 0 // Not RGB // Standard ESP32 DevKits usually have a single blue LED on GPIO 2.
#define GPS_TX_PIN GPIO_NUM_17 // They rarely have an addressable RGB LED built-in.
#define GPS_RX_PIN GPIO_NUM_16 #define RGB_LED_GPIO 2
#define GPS_PPS_PIN GPIO_NUM_4 #define HAS_RGB_LED 0
#else #endif
// Fallback
#define RGB_LED_GPIO 8 // ============================================================================
#define HAS_RGB_LED 1 // Fallbacks (Prevent Compilation Errors)
#define GPS_TX_PIN GPIO_NUM_1 // ============================================================================
#define GPS_RX_PIN GPIO_NUM_3 #ifndef RGB_LED_GPIO
#define GPS_PPS_PIN GPIO_NUM_5 #define RGB_LED_GPIO 2
#endif
#ifndef HAS_RGB_LED
#define HAS_RGB_LED 0
#endif #endif
#endif // BOARD_CONFIG_H #endif // BOARD_CONFIG_H

View File

@ -9,18 +9,15 @@
#include "esp_vfs_dev.h" #include "esp_vfs_dev.h"
#include "driver/uart.h" #include "driver/uart.h"
#include "nvs_flash.h" #include "nvs_flash.h"
#include "nvs.h" // Added for NVS read
#include "esp_netif.h" #include "esp_netif.h"
#include "esp_event.h" #include "esp_event.h"
// Components // Components
#include "status_led.h" #include "status_led.h"
#include "board_config.h" #include "board_config.h"
#include "gps_sync.h"
#include "wifi_controller.h" #include "wifi_controller.h"
#include "wifi_cfg.h" #include "wifi_cfg.h"
#include "app_console.h" #include "app_console.h"
#include "iperf.h"
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_log.h" #include "csi_log.h"
@ -31,37 +28,6 @@
static const char *TAG = "MAIN"; static const char *TAG = "MAIN";
// --- Global Prompt Buffer (Mutable) ---
static char s_cli_prompt[32] = "esp32> ";
// --- Prompt Updater ---
void app_console_update_prompt(void) {
bool dirty = false;
if (wifi_ctl_param_is_unsaved()) dirty = true;
if (iperf_param_is_unsaved()) dirty = true;
if (dirty) {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32*> ");
} else {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32> ");
}
}
// --- Helper: Check NVS for GPS Enable ---
static bool is_gps_enabled(void) {
nvs_handle_t h;
uint8_t val = 1; // Default to Enabled (1)
// Check 'storage' namespace first (where iperf/system settings live)
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
if (nvs_get_u8(h, "gps_enabled", &val) != ESP_OK) {
val = 1; // Key missing = Enabled
}
nvs_close(h);
}
return (val != 0);
}
// --- System Commands --- // --- System Commands ---
static int cmd_restart(int argc, char **argv) { static int cmd_restart(int argc, char **argv) {
@ -107,21 +73,6 @@ void app_main(void) {
ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(esp_event_loop_create_default());
// -------------------------------------------------------------
// GPS Initialization (Conditional)
// -------------------------------------------------------------
if (is_gps_enabled()) {
const gps_sync_config_t gps_cfg = {
.uart_port = UART_NUM_1,
.tx_pin = GPS_TX_PIN,
.rx_pin = GPS_RX_PIN,
.pps_pin = GPS_PPS_PIN,
};
gps_sync_init(&gps_cfg, true);
} else {
ESP_LOGW(TAG, "GPS initialization skipped (Disabled in NVS)");
}
// 3. Hardware Init // 3. Hardware Init
status_led_init(RGB_LED_GPIO, HAS_RGB_LED); status_led_init(RGB_LED_GPIO, HAS_RGB_LED);
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
@ -129,17 +80,18 @@ void app_main(void) {
csi_mgr_init(); csi_mgr_init();
#endif #endif
// 4. Initialize WiFi Controller & iPerf // 4. Initialize WiFi Controller (Loads config from NVS automatically)
wifi_ctl_init(); wifi_ctl_init();
iperf_param_init();
// 5. Initialize Console // 5. Initialize Console
esp_console_repl_t *repl = NULL; esp_console_repl_t *repl = NULL;
esp_console_repl_config_t repl_config = ESP_CONSOLE_REPL_CONFIG_DEFAULT(); esp_console_repl_config_t repl_config = ESP_CONSOLE_REPL_CONFIG_DEFAULT();
repl_config.prompt = s_cli_prompt; // This prompt is the anchor for your Python script
repl_config.prompt = "esp32> ";
repl_config.max_cmdline_length = 1024; repl_config.max_cmdline_length = 1024;
// Install UART driver for Console (Standard IO)
esp_console_dev_uart_config_t hw_config = ESP_CONSOLE_DEV_UART_CONFIG_DEFAULT(); esp_console_dev_uart_config_t hw_config = ESP_CONSOLE_DEV_UART_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_console_new_repl_uart(&hw_config, &repl_config, &repl)); ESP_ERROR_CHECK(esp_console_new_repl_uart(&hw_config, &repl_config, &repl));
@ -147,14 +99,12 @@ void app_main(void) {
register_system_common(); register_system_common();
app_console_register_commands(); app_console_register_commands();
// 7. Initial Prompt State Check // 7. Start Shell
app_console_update_prompt();
// 8. Start Shell
printf("\n ==================================================\n"); printf("\n ==================================================\n");
printf(" | ESP32 iPerf Shell - Ready |\n"); printf(" | ESP32 iPerf Shell - Ready |\n");
printf(" | Type 'help' for commands |\n"); printf(" | Type 'help' for commands |\n");
printf(" ==================================================\n"); printf(" ==================================================\n");
// This function runs the REPL loop and does not return
ESP_ERROR_CHECK(esp_console_start_repl(repl)); ESP_ERROR_CHECK(esp_console_start_repl(repl));
} }