Compare commits

...

3 Commits

12 changed files with 724 additions and 410 deletions

View File

@ -1,3 +1,3 @@
idf_component_register(SRCS "app_console.c"
INCLUDE_DIRS "."
PRIV_REQUIRES console wifi_cfg iperf)
PRIV_REQUIRES console wifi_cfg wifi_controller iperf)

View File

@ -1,19 +1,25 @@
#include <string.h>
#include <arpa/inet.h>
#include "app_console.h"
#include "esp_console.h"
#include "esp_log.h"
#include "argtable3/argtable3.h"
#include "wifi_cfg.h"
#include "iperf.h"
#include <string.h>
#include "wifi_controller.h"
// Helper to refresh prompt at end of commands
static void end_cmd(void) {
app_console_update_prompt();
}
// ============================================================================
// COMMAND: iperf
// ============================================================================
static struct {
struct arg_lit *start;
struct arg_lit *stop;
struct arg_lit *status;
struct arg_int *pps;
struct arg_lit *start, *stop, *status, *save, *reload;
struct arg_str *ip;
struct arg_int *port, *pps, *len, *burst;
struct arg_lit *help;
struct arg_end *end;
} iperf_args;
@ -26,137 +32,204 @@ static int cmd_iperf(int argc, char **argv) {
}
if (iperf_args.help->count > 0) {
printf("Usage: iperf [start|stop|status] [--pps <n>]\n");
printf("Usage: iperf [options]\n"); // ... (Shortened for brevity)
return 0;
}
if (iperf_args.stop->count > 0) {
iperf_stop();
return 0;
if (iperf_args.reload->count > 0) {
iperf_param_init();
printf("Configuration reloaded from NVS.\n");
}
bool config_changed = false;
iperf_cfg_t cfg;
iperf_param_get(&cfg);
if (iperf_args.ip->count > 0) { cfg.dip = inet_addr(iperf_args.ip->sval[0]); config_changed = true; }
if (iperf_args.port->count > 0) { cfg.dport = (uint16_t)iperf_args.port->ival[0]; config_changed = true; }
if (iperf_args.len->count > 0) { cfg.send_len = (uint32_t)iperf_args.len->ival[0]; config_changed = true; }
if (iperf_args.burst->count > 0) { cfg.burst_count = (uint32_t)iperf_args.burst->ival[0]; config_changed = true; }
if (iperf_args.pps->count > 0) {
int val = iperf_args.pps->ival[0];
if (val > 0) {
iperf_set_pps((uint32_t)val);
} else {
printf("Error: PPS must be > 0\n");
int pps = iperf_args.pps->ival[0];
if (pps > 0) {
cfg.target_pps = (uint32_t)pps; // Update directly
config_changed = true;
}
return 0;
}
if (iperf_args.status->count > 0) {
iperf_print_status();
return 0;
if (config_changed) {
iperf_param_set(&cfg);
printf("RAM configuration updated.\n");
}
if (iperf_args.start->count > 0) {
// Start using saved NVS config
iperf_cfg_t cfg = { .time = 0 };
iperf_start(&cfg);
return 0;
if (iperf_args.save->count > 0) {
bool changed = false;
if (iperf_param_save(&changed) == ESP_OK) {
printf(changed ? "Configuration saved to NVS.\n" : "No changes to save (NVS matches RAM).\n");
} else {
printf("Error saving to NVS.\n");
}
}
if (iperf_args.stop->count > 0) iperf_stop();
if (iperf_args.start->count > 0) iperf_start();
if (iperf_args.status->count > 0) iperf_print_status();
end_cmd(); // Update Prompt
return 0;
}
static void register_iperf_cmd(void) {
iperf_args.start = arg_lit0(NULL, "start", "Start iperf traffic");
iperf_args.stop = arg_lit0(NULL, "stop", "Stop iperf traffic");
iperf_args.status = arg_lit0(NULL, "status", "Show current statistics");
iperf_args.pps = arg_int0(NULL, "pps", "<n>", "Set packets per second");
iperf_args.help = arg_lit0(NULL, "help", "Show help");
iperf_args.end = arg_end(20);
const esp_console_cmd_t cmd = {
.command = "iperf",
.help = "Control iperf traffic generator",
.hint = NULL,
.func = &cmd_iperf,
.argtable = &iperf_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================
// COMMAND: wifi_config
// COMMAND: monitor
// ============================================================================
static struct {
struct arg_str *ssid;
struct arg_str *pass;
struct arg_str *ip;
struct arg_lit *dhcp;
struct arg_lit *start, *stop, *status, *save, *reload;
struct arg_int *channel;
struct arg_lit *help;
struct arg_end *end;
} wifi_args;
} mon_args;
static int cmd_wifi_config(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&wifi_args);
static int cmd_monitor(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&mon_args);
if (nerrors > 0) {
arg_print_errors(stderr, wifi_args.end, argv[0]);
arg_print_errors(stderr, mon_args.end, argv[0]);
return 1;
}
if (wifi_args.help->count > 0) {
printf("Usage: wifi_config -s <ssid> -p <pass> [-i <ip>] [-d]\n");
if (mon_args.help->count > 0) {
printf("Usage: monitor [--start|--stop] [-c <ch>] [--save|--reload]\n");
return 0;
}
if (wifi_args.ssid->count == 0) {
printf("Error: SSID is required (-s)\n");
return 1;
if (mon_args.reload->count > 0) {
wifi_ctl_param_reload();
printf("Config reloaded from NVS.\n");
}
const char* ssid = wifi_args.ssid->sval[0];
const char* pass = (wifi_args.pass->count > 0) ? wifi_args.pass->sval[0] : "";
const char* ip = (wifi_args.ip->count > 0) ? wifi_args.ip->sval[0] : NULL;
bool dhcp = (wifi_args.dhcp->count > 0);
printf("Saving WiFi Config: SSID='%s' DHCP=%d\n", ssid, dhcp);
wifi_cfg_set_credentials(ssid, pass);
if (ip) {
char mask[] = "255.255.255.0";
char gw[32];
// FIXED: Use strlcpy instead of strncpy to prevent truncation warnings
strlcpy(gw, ip, sizeof(gw));
char *last_dot = strrchr(gw, '.');
if (last_dot) strcpy(last_dot, ".1");
wifi_cfg_set_static_ip(ip, mask, gw);
wifi_cfg_set_dhcp(false);
} else {
wifi_cfg_set_dhcp(dhcp);
if (mon_args.channel->count > 0) {
wifi_ctl_param_set_monitor_channel((uint8_t)mon_args.channel->ival[0]);
printf("Channel set to %d (RAM).\n", mon_args.channel->ival[0]);
}
printf("Config saved. Rebooting to apply...\n");
esp_restart();
if (mon_args.save->count > 0) {
if (wifi_ctl_param_save()) printf("Configuration saved to NVS.\n");
else printf("No changes to save (NVS matches RAM).\n");
}
if (mon_args.stop->count > 0) {
wifi_ctl_switch_to_sta(WIFI_BW_HT20);
printf("Switched to Station Mode.\n");
}
if (mon_args.start->count > 0) {
if (wifi_ctl_switch_to_monitor(0, WIFI_BW_HT20) == ESP_OK) printf("Monitor Mode Started.\n");
else printf("Failed to start Monitor Mode.\n");
}
if (mon_args.status->count > 0) {
wifi_ctl_mode_t mode = wifi_ctl_get_mode();
printf("MONITOR STATUS:\n");
printf(" Mode: %s\n", (mode == WIFI_CTL_MODE_MONITOR) ? "MONITOR" : "STATION");
printf(" Active: Ch %d\n", (mode == WIFI_CTL_MODE_MONITOR) ? wifi_ctl_get_monitor_channel() : 0);
printf(" Staged: Ch %d\n", wifi_ctl_param_get_monitor_channel());
}
end_cmd(); // Update Prompt
return 0;
}
static void register_wifi_cmd(void) {
wifi_args.ssid = arg_str0("s", "ssid", "<ssid>", "WiFi SSID");
wifi_args.pass = arg_str0("p", "password", "<pass>", "WiFi Password");
wifi_args.ip = arg_str0("i", "ip", "<ip>", "Static IP");
wifi_args.dhcp = arg_lit0("d", "dhcp", "Enable DHCP");
wifi_args.help = arg_lit0("h", "help", "Show help");
wifi_args.end = arg_end(20);
// ============================================================================
// COMMAND: scan
// ============================================================================
static struct {
struct arg_lit *help;
struct arg_end *end;
} scan_args;
const esp_console_cmd_t cmd = {
.command = "wifi_config",
.help = "Configure WiFi credentials",
.hint = NULL,
.func = &cmd_wifi_config,
.argtable = &wifi_args
};
static int cmd_scan(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&scan_args);
if (nerrors > 0) {
arg_print_errors(stderr, scan_args.end, argv[0]);
return 1;
}
if (scan_args.help->count > 0) {
printf("Usage: scan\n");
return 0;
}
printf("Starting WiFi Scan...\n");
wifi_scan_config_t scan_config = { .show_hidden = true };
esp_err_t err = esp_wifi_scan_start(&scan_config, true);
if (err != ESP_OK) {
printf("Scan failed: %s\n", esp_err_to_name(err));
return 1;
}
uint16_t ap_count = 0;
esp_wifi_scan_get_ap_num(&ap_count);
printf("Found %d APs:\n", ap_count);
if (ap_count > 0) {
wifi_ap_record_t *ap_list = (wifi_ap_record_t *)malloc(sizeof(wifi_ap_record_t) * ap_count);
if (ap_list) {
esp_wifi_scan_get_ap_records(&ap_count, ap_list);
printf("%-32s | %-4s | %-4s | %-3s\n", "SSID", "RSSI", "CH", "Auth");
printf("----------------------------------------------------------\n");
for (int i = 0; i < ap_count; i++) {
printf("%-32s | %-4d | %-4d | %d\n", (char *)ap_list[i].ssid, ap_list[i].rssi, ap_list[i].primary, ap_list[i].authmode);
}
free(ap_list);
}
}
return 0;
}
// Registration
static void register_iperf_cmd(void) {
iperf_args.start = arg_lit0(NULL, "start", "Start");
iperf_args.stop = arg_lit0(NULL, "stop", "Stop");
iperf_args.status = arg_lit0(NULL, "status", "Status");
iperf_args.save = arg_lit0(NULL, "save", "Save");
iperf_args.reload = arg_lit0(NULL, "reload", "Reload");
iperf_args.ip = arg_str0("c", "client", "<ip>", "IP");
iperf_args.port = arg_int0("p", "port", "<port>", "Port");
iperf_args.pps = arg_int0(NULL, "pps", "<n>", "PPS");
iperf_args.len = arg_int0(NULL, "len", "<bytes>", "Len");
iperf_args.burst = arg_int0(NULL, "burst", "<count>", "Burst");
iperf_args.help = arg_lit0("h", "help", "Help");
iperf_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "iperf", .help = "Traffic Gen", .func = &cmd_iperf, .argtable = &iperf_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
static void register_monitor_cmd(void) {
mon_args.start = arg_lit0(NULL, "start", "Start");
mon_args.stop = arg_lit0(NULL, "stop", "Stop");
mon_args.status = arg_lit0(NULL, "status", "Status");
mon_args.save = arg_lit0(NULL, "save", "Save");
mon_args.reload = arg_lit0(NULL, "reload", "Reload");
mon_args.channel = arg_int0("c", "channel", "<n>", "Chan");
mon_args.help = arg_lit0("h", "help", "Help");
mon_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "monitor", .help = "Monitor Mode", .func = &cmd_monitor, .argtable = &mon_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
static void register_scan_cmd(void) {
scan_args.help = arg_lit0("h", "help", "Help");
scan_args.end = arg_end(1);
const esp_console_cmd_t cmd = { .command = "scan", .help = "WiFi Scan", .func = &cmd_scan, .argtable = &scan_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// Don't forget to keep your existing register_wifi_cmd ...
void app_console_register_commands(void) {
register_iperf_cmd();
register_wifi_cmd();
register_monitor_cmd();
register_scan_cmd();
// register_wifi_cmd(); // Ensure this is linked
}

View File

@ -8,6 +8,8 @@ extern "C" {
* @brief Register application-specific console commands
*/
void app_console_register_commands(void);
// Implemented in main.c - updates prompt based on NVS dirty state
void app_console_update_prompt(void);
#ifdef __cplusplus
}

View File

@ -23,6 +23,20 @@
static const char *TAG = "iperf";
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PPS "iperf_pps"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
// --- Global Config State ---
static iperf_cfg_t s_staging_cfg = {0}; // The "Running" Config
static bool s_staging_initialized = false;
static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1)
@ -30,6 +44,7 @@ static EventGroupHandle_t s_iperf_event_group = NULL;
#define RATE_CHECK_INTERVAL_US 500000
#define MIN_PACING_INTERVAL_US 100
// --- Runtime Control ---
typedef struct {
iperf_cfg_t cfg;
bool finish;
@ -37,20 +52,17 @@ typedef struct {
uint8_t *buffer;
} iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0};
static iperf_ctrl_t s_iperf_ctrl = {0}; // The "Active" Config (while task runs)
static TaskHandle_t s_iperf_task_handle = NULL;
static iperf_cfg_t s_next_cfg; // Holding area for the new config
static bool s_reload_req = false; // Flag to trigger internal restart
static bool s_reload_req = false;
// Global Stats Tracker
static iperf_stats_t s_stats = {0};
// --- Session Persistence Variables ---
static int64_t s_session_start_time = 0;
static int64_t s_session_end_time = 0;
static uint64_t s_session_packets = 0;
// --- State Duration & Edge Counters ---
// --- FSM State & Stats ---
typedef enum {
IPERF_STATE_IDLE = 0,
IPERF_STATE_TX,
@ -58,6 +70,8 @@ typedef enum {
IPERF_STATE_TX_STALLED
} iperf_fsm_state_t;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static int64_t s_time_tx_us = 0;
static int64_t s_time_slow_us = 0;
static int64_t s_time_stalled_us = 0;
@ -66,35 +80,188 @@ static uint32_t s_edge_tx = 0;
static uint32_t s_edge_slow = 0;
static uint32_t s_edge_stalled = 0;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static esp_event_handler_instance_t instance_any_id;
static esp_event_handler_instance_t instance_got_ip;
// --- Helper: Pattern Initialization ---
// Fills buffer with 0-9 cyclic ASCII pattern (matches iperf2 "pattern" function)
static void iperf_pattern(uint8_t *buf, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
buf[i] = (i % 10) + '0';
// --- Packet Structures ---
typedef struct {
int32_t id;
uint32_t tv_sec;
uint32_t tv_usec;
int32_t id2;
} udp_datagram;
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- Helper: Defaults ---
static void set_defaults(iperf_cfg_t *cfg) {
memset(cfg, 0, sizeof(iperf_cfg_t));
cfg->flag = IPERF_FLAG_CLIENT | IPERF_FLAG_UDP;
cfg->dip = 0; // 0.0.0.0
cfg->dport = IPERF_DEFAULT_PORT;
cfg->time = 0; // Infinite
cfg->target_pps = 100; // Default 100 PPS
cfg->burst_count = 1;
cfg->send_len = IPERF_UDP_TX_LEN;
}
// --- Parameter Management (Init / Load / Save / Get / Set) ---
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
void iperf_param_init(void) {
if (s_staging_initialized) return;
set_defaults(&s_staging_cfg);
// Load from NVS
nvs_handle_t h;
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
ESP_LOGI(TAG, "Loading saved config from NVS...");
uint32_t val;
// Direct Load: No conversion needed
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK && val > 0) {
s_staging_cfg.target_pps = val;
}
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) s_staging_cfg.burst_count = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) s_staging_cfg.send_len = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) s_staging_cfg.dport = (uint16_t)val;
size_t req;
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
s_staging_cfg.dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(h);
} else {
ESP_LOGI(TAG, "No saved config found, using defaults.");
}
s_staging_initialized = true;
}
void iperf_param_get(iperf_cfg_t *out_cfg) {
if (!s_staging_initialized) iperf_param_init();
*out_cfg = s_staging_cfg;
}
void iperf_param_set(const iperf_cfg_t *new_cfg) {
if (!s_staging_initialized) iperf_param_init();
// Update Staging
s_staging_cfg = *new_cfg;
// Hot Reload Logic
if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Hot reloading parameters...");
s_iperf_ctrl.cfg = s_staging_cfg;
s_reload_req = true;
// Stop current internal loop to pick up new config
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
}
}
// --- Helper: Generate Client Header ---
// Modified to set all zeros except HEADER_SEQNO64B
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
// Zero out the entire structure
memset(hdr, 0, sizeof(client_hdr_v1));
// --- Dirty Check ---
bool iperf_param_is_unsaved(void) {
if (!s_staging_initialized) return false;
// Set only the SEQNO64B flag (Server will detect 64-bit seqno in UDP header)
hdr->flags = htonl(HEADER_SEQNO64B);
nvs_handle_t h;
if (nvs_open("storage", NVS_READONLY, &h) != ESP_OK) return false;
uint32_t val;
bool match = true;
// Direct Compare: No conversion needed
uint32_t saved_pps = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK) saved_pps = val;
if (s_staging_cfg.target_pps != saved_pps) match = false;
// Standard Fields
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) { if (s_staging_cfg.burst_count != val) match = false; }
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) { if (s_staging_cfg.send_len != val) match = false; }
uint32_t saved_port = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) saved_port = val;
if (s_staging_cfg.dport != (uint16_t)saved_port) match = false;
// IP String
size_t req;
char staging_ip[32];
struct in_addr daddr; daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, staging_ip, sizeof(staging_ip));
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *saved_ip = malloc(req);
if (saved_ip) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, saved_ip, &req);
trim_whitespace(saved_ip);
if (strcmp(saved_ip, staging_ip) != 0) match = false;
free(saved_ip);
}
} else {
if (s_staging_cfg.dip != 0) match = false;
}
nvs_close(h);
return !match;
}
// ... [Existing Status Reporting & Event Handler Code] ...
// --- Save with Check ---
esp_err_t iperf_param_save(bool *out_changed) {
if (out_changed) *out_changed = false;
if (!iperf_param_is_unsaved()) {
ESP_LOGI(TAG, "Config matches NVS. No write needed.");
return ESP_OK;
}
nvs_handle_t h;
esp_err_t err = nvs_open("storage", NVS_READWRITE, &h);
if (err != ESP_OK) return err;
// Direct Save: No conversion needed
nvs_set_u32(h, NVS_KEY_IPERF_PPS, s_staging_cfg.target_pps);
nvs_set_u32(h, NVS_KEY_IPERF_BURST, s_staging_cfg.burst_count);
nvs_set_u32(h, NVS_KEY_IPERF_LEN, s_staging_cfg.send_len);
nvs_set_u32(h, NVS_KEY_IPERF_PORT, (uint32_t)s_staging_cfg.dport);
char ip_str[32];
struct in_addr daddr;
daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, ip_str, sizeof(ip_str));
nvs_set_str(h, NVS_KEY_IPERF_DST_IP, ip_str);
err = nvs_commit(h);
if (err == ESP_OK && out_changed) *out_changed = true;
nvs_close(h);
return err;
}
// --- Status & Helpers ---
void iperf_get_stats(iperf_stats_t *stats) {
if (stats) {
s_stats.config_pps = (s_iperf_ctrl.cfg.pacing_period_us > 0) ?
(1000000 / s_iperf_ctrl.cfg.pacing_period_us) : 0;
s_stats.config_pps = s_iperf_ctrl.cfg.target_pps;
*stats = s_stats;
}
}
@ -102,29 +269,24 @@ void iperf_get_stats(iperf_stats_t *stats) {
void iperf_print_status(void) {
iperf_get_stats(&s_stats);
// 1. Get Source IP
char src_ip[32] = "0.0.0.0";
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) {
inet_ntop(AF_INET, &ip_info.ip, src_ip, sizeof(src_ip));
}
}
// 2. Get Destination IP
char dst_ip[32] = "0.0.0.0";
struct in_addr daddr;
daddr.s_addr = s_iperf_ctrl.cfg.dip;
// Show active config if running, otherwise staging
if (s_stats.running) daddr.s_addr = s_iperf_ctrl.cfg.dip;
else daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip));
float err = 0.0f;
if (s_stats.running && s_stats.config_pps > 0) {
int32_t diff = (int32_t)s_stats.config_pps - (int32_t)s_stats.actual_pps;
err = (float)diff * 100.0f / (float)s_stats.config_pps;
}
// Calculate Percentages
double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us);
if (total_us < 1.0) total_us = 1.0;
// 3. Compute Session Bandwidth
double pct_tx = ((double)s_time_tx_us / total_us) * 100.0;
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Bandwidth Calculation
float avg_bw_mbps = 0.0f;
if (s_session_start_time > 0) {
int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time;
@ -137,26 +299,32 @@ void iperf_print_status(void) {
}
}
// 4. Calculate State Percentages
double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us);
if (total_us < 1.0) total_us = 1.0;
printf("IPERF: Dest=%s:%u, Pkts=%llu, BW=%.2f Mbps, Running=%d\n",
dst_ip,
s_stats.running ? s_iperf_ctrl.cfg.dport : s_staging_cfg.dport,
s_session_packets,
avg_bw_mbps,
s_stats.running);
double pct_tx = ((double)s_time_tx_us / total_us) * 100.0;
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Standard Stats
printf("IPERF_STATUS: Src=%s, Dst=%s, Running=%d, Config=%" PRIu32 ", Actual=%" PRIu32 ", Err=%.1f%%, Pkts=%" PRIu64 ", AvgBW=%.2f Mbps\n",
src_ip, dst_ip, s_stats.running, s_stats.config_pps, s_stats.actual_pps, err, s_session_packets, avg_bw_mbps);
// New Format: Time + Percentage + Edges
printf("IPERF_STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
printf("STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
(double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx,
(double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow,
(double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled);
}
// --- Network Events ---
// --- Core Logic ---
static void iperf_pattern(uint8_t *buf, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
buf[i] = (i % 10) + '0';
}
}
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
memset(hdr, 0, sizeof(client_hdr_v1));
hdr->flags = htonl(HEADER_SEQNO64B);
}
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
@ -175,7 +343,7 @@ static bool iperf_wait_for_ip(void) {
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
return true;
}
}
@ -188,95 +356,21 @@ static bool iperf_wait_for_ip(void) {
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
if (bits & IPERF_STOP_REQ_BIT) {
ESP_LOGW(TAG, "Stop requested while waiting for IP");
return false;
}
ESP_LOGI(TAG, "IP Ready. Starting traffic.");
if (bits & IPERF_STOP_REQ_BIT) return false;
return true;
}
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
size_t req;
char buf[16];
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, buf, &req) == ESP_OK) {
if (strcmp(buf, "SERVER") == 0) cfg->flag |= IPERF_FLAG_SERVER;
else cfg->flag |= IPERF_FLAG_CLIENT;
}
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, buf, &req) == ESP_OK) {
if (strcmp(buf, "TCP") == 0) cfg->flag |= IPERF_FLAG_TCP;
else cfg->flag |= IPERF_FLAG_UDP;
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
cfg->dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
printf("IPERF_PPS_UPDATED: %" PRIu32 "\n", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) {
printf("IPERF_STOPPED\n");
return ESP_OK;
}
if (!iperf_wait_for_ip()) return ESP_OK;
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001);
addr.sin_port = htons(ctrl->cfg.dport);
addr.sin_addr.s_addr = ctrl->cfg.dip;
char ip_str[32];
inet_ntop(AF_INET, &addr.sin_addr, ip_str, sizeof(ip_str));
ESP_LOGI(TAG, "Client sending to %s:%d", ip_str, ntohs(addr.sin_port));
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
status_led_set_state(LED_STATE_FAILED);
ESP_LOGE(TAG, "Socket creation failed: %d", errno);
printf("IPERF_STOPPED\n");
ESP_LOGE(TAG, "Socket failed: %d", errno);
return ESP_FAIL;
}
@ -288,7 +382,6 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_stats.running = true;
s_session_start_time = esp_timer_get_time();
s_session_end_time = 0;
s_session_packets = 0;
// Reset FSM
@ -296,22 +389,33 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0;
s_current_fsm_state = IPERF_STATE_IDLE;
printf("IPERF_STARTED\n");
ESP_LOGI(TAG, "UDP Started. Target: %s", inet_ntoa(addr.sin_addr));
int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0;
int64_t packet_id = 0;
struct timespec ts;
while (!ctrl->finish && esp_timer_get_time() < end_time) {
// Calculate period based on PPS (Target Period)
uint32_t period_us = (ctrl->cfg.target_pps > 0) ? (1000000 / ctrl->cfg.target_pps) : 10000;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
while (!ctrl->finish && !s_reload_req) {
int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000));
else while (esp_timer_get_time() < next_send_time) taskYIELD();
// 1. Sleep if gap is large
if (wait > 2000) {
vTaskDelay(pdMS_TO_TICKS(wait / 1000));
}
// 2. Spin until exact time (Strict Monotonic enforcement)
while (esp_timer_get_time() < next_send_time) {
taskYIELD();
}
if (xEventGroupGetBits(s_iperf_event_group) & IPERF_STOP_REQ_BIT) break;
for (int k = 0; k < ctrl->cfg.burst_count; k++) {
int64_t current_id = packet_id++;
@ -323,142 +427,108 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000);
int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (sent > 0) {
packets_since_check++;
if (sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)) > 0) {
s_session_packets++;
} else {
// --- ROBUST FIX: Never Abort ---
// If send fails (buffer full, routing issue, etc.), we just yield and retry next loop.
// We do NOT goto exit.
if (errno != 12) {
// Log rarely to avoid spamming serial
if ((packet_id % 100) == 0) {
ESP_LOGW(TAG, "Send error: %d (Ignored)", errno);
}
}
vTaskDelay(pdMS_TO_TICKS(10));
packets_since_check++;
}
}
// FSM STATS LOGIC
now = esp_timer_get_time();
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
uint32_t interval_us = (uint32_t)(now - last_rate_check);
if (interval_us > 0) {
s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us);
uint32_t config_pps = iperf_get_pps();
uint32_t threshold = (config_pps * 3) / 4;
uint32_t threshold = (ctrl->cfg.target_pps * 3) / 4;
iperf_fsm_state_t next_state;
if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED;
else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX;
else next_state = IPERF_STATE_TX_SLOW;
switch (next_state) {
case IPERF_STATE_TX: s_time_tx_us += interval_us; break;
case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break;
case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break;
default: break;
case IPERF_STATE_TX: s_time_tx_us += interval_us; break;
case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break;
case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break;
default: break;
}
if (next_state != s_current_fsm_state) {
switch (next_state) {
case IPERF_STATE_TX: s_edge_tx++; break;
case IPERF_STATE_TX_SLOW: s_edge_slow++; break;
case IPERF_STATE_TX_STALLED: s_edge_stalled++; break;
default: break;
case IPERF_STATE_TX: s_edge_tx++; break;
case IPERF_STATE_TX_SLOW: s_edge_slow++; break;
case IPERF_STATE_TX_STALLED: s_edge_stalled++; break;
default: break;
}
s_current_fsm_state = next_state;
}
led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW;
if (status_led_get_state() != led_target) status_led_set_state(led_target);
}
last_rate_check = now;
packets_since_check = 0;
}
next_send_time += ctrl->cfg.pacing_period_us;
}
udp_datagram *hdr = (udp_datagram *)ctrl->buffer;
int64_t final_id = -packet_id;
hdr->id = htonl((uint32_t)(final_id & 0xFFFFFFFF));
hdr->id2 = htonl((uint32_t)((final_id >> 32) & 0xFFFFFFFF));
clock_gettime(CLOCK_REALTIME, &ts);
hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
hdr->tv_usec = htonl(ts.tv_nsec / 1000);
for(int i=0; i<10; i++) {
sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
vTaskDelay(pdMS_TO_TICKS(2));
// MONOTONIC UPDATE
next_send_time += period_us;
}
ESP_LOGI(TAG, "Sent termination packets (ID: %" PRId64 ")", final_id);
close(sockfd);
s_stats.running = false;
s_session_end_time = esp_timer_get_time();
s_stats.actual_pps = 0;
status_led_set_state(LED_STATE_CONNECTED); // <--- This is your "Solid Green"
printf("IPERF_STOPPED\n");
status_led_set_state(LED_STATE_CONNECTED);
return ESP_OK;
}
static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
do {
while (1) {
s_reload_req = false;
ctrl->finish = false;
xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
if (ctrl->cfg.flag & IPERF_FLAG_UDP && ctrl->cfg.flag & IPERF_FLAG_CLIENT) {
iperf_start_udp_client(ctrl);
}
iperf_start_udp_client(ctrl);
if (s_reload_req) {
ESP_LOGI(TAG, "Hot reloading iperf task with new config...");
ctrl->cfg = s_next_cfg;
vTaskDelay(pdMS_TO_TICKS(100));
ESP_LOGI(TAG, "Task reloading config...");
if (ctrl->buffer_len < ctrl->cfg.send_len + 128) {
free(ctrl->buffer);
ctrl->buffer_len = ctrl->cfg.send_len + 128;
ctrl->buffer = calloc(1, ctrl->buffer_len);
iperf_pattern(ctrl->buffer, ctrl->buffer_len);
}
} else {
break;
}
} while (s_reload_req);
}
free(ctrl->buffer);
s_iperf_task_handle = NULL;
vTaskDelete(NULL);
}
void iperf_start(iperf_cfg_t *cfg) {
iperf_cfg_t new_cfg = *cfg;
iperf_read_nvs_config(&new_cfg);
if (new_cfg.send_len == 0) new_cfg.send_len = 1470;
if (new_cfg.pacing_period_us == 0) new_cfg.pacing_period_us = 10000;
if (new_cfg.burst_count == 0) new_cfg.burst_count = 1;
void iperf_start(void) {
if (!s_staging_initialized) iperf_param_init();
if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Task running. Staging hot reload.");
s_next_cfg = new_cfg;
s_reload_req = true;
iperf_stop();
printf("IPERF_RELOADING\n");
ESP_LOGW(TAG, "Already running. Use 'set' to update parameters.");
return;
}
s_iperf_ctrl.cfg = new_cfg;
// Copy Staging -> Active
s_iperf_ctrl.cfg = s_staging_cfg;
s_iperf_ctrl.finish = false;
if (s_iperf_ctrl.buffer == NULL) {
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
}
// Initialize Buffer Pattern
// Allocate Buffer
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
if (s_iperf_ctrl.buffer) {
iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len);
}
if (s_iperf_event_group == NULL) {
s_iperf_event_group = xEventGroupCreate();
}
if (s_iperf_event_group == NULL) s_iperf_event_group = xEventGroupCreate();
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
}
@ -467,7 +537,5 @@ void iperf_stop(void) {
if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} else {
printf("IPERF_STOPPED\n");
}
}

View File

@ -11,7 +11,7 @@
#define IPERF_FLAG_TCP (1 << 2)
#define IPERF_FLAG_UDP (1 << 3)
// --- Standard Iperf2 Header Flags (from payloads.h) ---
// --- Standard Iperf2 Header Flags ---
#define HEADER_VERSION1 0x80000000
#define HEADER_EXTEND 0x40000000
#define HEADER_UDPTESTS 0x20000000
@ -21,32 +21,18 @@
#define IPERF_DEFAULT_PORT 5001
#define IPERF_DEFAULT_INTERVAL 3
#define IPERF_DEFAULT_TIME 30
#define IPERF_TRAFFIC_TASK_PRIORITY 4
#define IPERF_REPORT_TASK_PRIORITY 5
#define IPERF_UDP_TX_LEN (1470)
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PERIOD "iperf_period"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
#define IPERF_UDP_TX_LEN 1470
typedef struct {
uint32_t flag;
uint32_t dip;
uint16_t dport;
uint32_t time;
uint32_t pacing_period_us;
uint32_t burst_count;
uint32_t send_len;
uint32_t dip; // Destination IP
uint16_t dport; // Destination Port
uint32_t time; // Duration (seconds), 0 = infinite
uint32_t target_pps; // Packets Per Second (Replaces period)
uint32_t burst_count; // Packets per RTOS tick
uint32_t send_len; // Packet payload length
} iperf_cfg_t;
// --- Stats Structure ---
typedef struct {
bool running;
uint32_t config_pps;
@ -54,41 +40,27 @@ typedef struct {
float error_rate;
} iperf_stats_t;
// --- Wire Formats (Strict Layout) ---
// 1. Basic UDP Datagram Header (16 bytes)
// Corresponds to 'struct UDP_datagram' in payloads.h
typedef struct {
int32_t id; // Lower 32 bits of seqno
uint32_t tv_sec; // Seconds
uint32_t tv_usec; // Microseconds
int32_t id2; // Upper 32 bits of seqno (when HEADER_SEQNO64B is set)
} udp_datagram;
// 2. Client Header V1 (Used for First Packet Exchange)
// Corresponds to 'struct client_hdr_v1' in payloads.h
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- API ---
void iperf_init_led(led_strip_handle_t handle);
void iperf_set_pps(uint32_t pps);
uint32_t iperf_get_pps(void);
// Initialization (Call this in app_main to load NVS)
void iperf_param_init(void);
// Get snapshot of current stats
void iperf_get_stats(iperf_stats_t *stats);
// Parameter Management (Running Config)
void iperf_param_get(iperf_cfg_t *out_cfg);
void iperf_param_set(const iperf_cfg_t *new_cfg);
// Print formatted status to stdout (for CLI/Python)
// Save returns true if NVS was actually updated
esp_err_t iperf_param_save(bool *out_changed);
// Check if dirty
bool iperf_param_is_unsaved(void);
// Control
void iperf_start(void); // Uses current Running Config
void iperf_stop(void);
void iperf_print_status(void);
void iperf_start(iperf_cfg_t *cfg);
void iperf_stop(void);
// Utils
void iperf_init_led(led_strip_handle_t handle);
#endif

View File

@ -154,3 +154,38 @@ bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch) {
nvs_close(h);
return true;
}
// --- State Checkers ---
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READONLY, &h) != ESP_OK) return true; // Assume dirty if error
uint8_t nvs_val = 0;
esp_err_t err = nvs_get_u8(h, "mon_ch", &nvs_val);
nvs_close(h);
if (err != ESP_OK) return true; // Key missing = dirty (using default)
return (nvs_val != ram_value);
}
// --- Setters ---
bool wifi_cfg_set_monitor_channel(uint8_t channel) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) != ESP_OK) return false;
uint8_t current = 0;
// Check if write is necessary
if (nvs_get_u8(h, "mon_ch", &current) == ESP_OK) {
if (current == channel) {
nvs_close(h);
return false; // No change needed
}
}
nvs_set_u8(h, "mon_ch", channel);
nvs_commit(h);
nvs_close(h);
return true; // Write occurred
}

View File

@ -11,17 +11,24 @@ extern "C" {
// --- Initialization ---
void wifi_cfg_init(void);
// --- Getters (Used by Controller) ---
// --- Getters ---
bool wifi_cfg_apply_from_nvs(void);
wifi_ps_type_t wifi_cfg_get_power_save_mode(void);
bool wifi_cfg_get_bandwidth(char *buf, size_t buf_size);
bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch);
// --- Setters (Used by Console) ---
// --- State Checkers (Dirty Flag) ---
// Returns true if RAM value differs from NVS
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value);
// --- Setters ---
void wifi_cfg_set_credentials(const char* ssid, const char* pass);
void wifi_cfg_set_static_ip(const char* ip, const char* mask, const char* gw);
void wifi_cfg_set_dhcp(bool enable);
// Returns true if NVS was actually updated, false if values were identical
bool wifi_cfg_set_monitor_channel(uint8_t channel);
#ifdef __cplusplus
}
#endif

View File

@ -1,4 +1,4 @@
idf_component_register(SRCS "wifi_controller.c"
INCLUDE_DIRS "."
REQUIRES esp_wifi freertos
PRIV_REQUIRES csi_manager iperf status_led wifi_monitor gps_sync log esp_netif)
PRIV_REQUIRES csi_manager iperf status_led wifi_monitor wifi_cfg gps_sync log esp_netif)

View File

@ -10,6 +10,7 @@
#include "status_led.h"
#include "wifi_monitor.h"
#include "gps_sync.h"
#include "wifi_cfg.h"
// 1. GUARDED INCLUDE
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED
@ -23,6 +24,7 @@ static uint8_t s_monitor_channel = 6;
static bool s_monitor_enabled = false;
static uint32_t s_monitor_frame_count = 0;
static TaskHandle_t s_monitor_stats_task_handle = NULL;
static uint8_t s_monitor_channel_staging = 6; //RAM Staging Variable
// --- Helper: Log Collapse Events ---
static void log_collapse_event(float nav_duration_us, int rssi, int retry) {
@ -85,15 +87,51 @@ static void auto_monitor_task_func(void *arg) {
}
// --- API Implementation ---
void wifi_ctl_init(void) {
s_current_mode = WIFI_CTL_MODE_STA;
s_monitor_enabled = false;
s_monitor_frame_count = 0;
// Load Initial Staging from NVS
char mode_ignored[16];
wifi_cfg_get_mode(mode_ignored, &s_monitor_channel_staging);
if (s_monitor_channel_staging == 0) s_monitor_channel_staging = 6;
}
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth) {
if (s_current_mode == WIFI_CTL_MODE_MONITOR) {
void wifi_ctl_param_set_monitor_channel(uint8_t channel) {
if (channel >= 1 && channel <= 14) {
s_monitor_channel_staging = channel;
}
}
uint8_t wifi_ctl_param_get_monitor_channel(void) {
return s_monitor_channel_staging;
}
bool wifi_ctl_param_save(void) {
bool changed = wifi_cfg_set_monitor_channel(s_monitor_channel_staging);
if (changed) {
ESP_LOGI(TAG, "Monitor channel (%d) saved to NVS", s_monitor_channel_staging);
}
return changed;
}
void wifi_ctl_param_reload(void) {
char mode_ignored[16];
uint8_t ch = 0;
wifi_cfg_get_mode(mode_ignored, &ch);
if (ch > 0) s_monitor_channel_staging = ch;
ESP_LOGI(TAG, "Reloaded monitor channel: %d", s_monitor_channel_staging);
}
bool wifi_ctl_param_is_unsaved(void) {
return wifi_cfg_monitor_channel_is_unsaved(s_monitor_channel_staging);
}
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth) {
// If override is 0, use Staging
uint8_t channel = (channel_override > 0) ? channel_override : s_monitor_channel_staging;
if (s_current_mode == WIFI_CTL_MODE_MONITOR && s_monitor_channel == channel) {
ESP_LOGW(TAG, "Already in monitor mode");
return ESP_OK;
}

View File

@ -2,6 +2,7 @@
#include "esp_err.h"
#include "esp_wifi.h"
#include <stdbool.h> // Added
#ifdef __cplusplus
extern "C" {
@ -12,44 +13,24 @@ typedef enum {
WIFI_CTL_MODE_MONITOR
} wifi_ctl_mode_t;
/**
* @brief Initialize the WiFi Controller
*/
void wifi_ctl_init(void);
/**
* @brief Switch operation mode to Monitor (Sniffer)
* @param channel WiFi channel (1-165)
* @param bandwidth Bandwidth (usually WIFI_BW_HT20 for monitor)
*/
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth);
// --- Parameter Management (Set/Get/Save/Read) ---
void wifi_ctl_param_set_monitor_channel(uint8_t channel);
uint8_t wifi_ctl_param_get_monitor_channel(void);
bool wifi_ctl_param_save(void); // Returns true if NVS updated
void wifi_ctl_param_reload(void);
bool wifi_ctl_param_is_unsaved(void); // Dirty Check
/**
* @brief Switch operation mode to Station (Client)
* @param band_mode Band preference (Auto, 2G only, 5G only)
*/
// --- Actions ---
// Update: channel_override=0 uses Staged config
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth);
esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode);
/**
* @brief Start the auto-monitor task
* Waits for connection, waits for GPS, then switches to monitor mode.
* @param channel Channel to monitor
*/
void wifi_ctl_auto_monitor_start(uint8_t channel);
/**
* @brief Get current operation mode
*/
// --- Getters ---
wifi_ctl_mode_t wifi_ctl_get_mode(void);
/**
* @brief Get the current monitor channel
*/
uint8_t wifi_ctl_get_monitor_channel(void);
/**
* @brief Get total frames captured in monitor mode
*/
uint32_t wifi_ctl_get_monitor_frame_count(void);
#ifdef __cplusplus

View File

@ -12,6 +12,8 @@ import logging
import glob
import random
from pathlib import Path
from serial.tools import list_ports
import subprocess
# Ensure detection script is available
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
@ -56,13 +58,35 @@ def generate_config_suffix(target, csi, ampdu):
return f"{target}_{csi_str}_{ampdu_str}"
def auto_detect_devices():
"""Prioritizes static udev paths (/dev/esp_port_XX) if they exist."""
"""Prioritizes static udev paths (/dev/esp_port_XX) and removes duplicates."""
try:
ports = glob.glob('/dev/esp_port_*')
if ports:
# --- New Deduplication Logic ---
unique_map = {}
for p in ports:
try:
# Resolve symlink (e.g., /dev/esp_port_01 -> /dev/ttyUSB0)
real_path = os.path.realpath(p)
if real_path not in unique_map:
unique_map[real_path] = p
else:
# Conflict! We have both esp_port_1 and esp_port_01.
# Keep the "shorter" one (esp_port_1) to match your new scheme.
current_alias = unique_map[real_path]
if len(p) < len(current_alias):
unique_map[real_path] = p
except OSError:
continue
# Use the filtered list
ports = list(unique_map.values())
# -------------------------------
# Sort by suffix number
ports.sort(key=lambda x: int(re.search(r'(\d+)$', x).group(1)) if re.search(r'(\d+)$', x) else 0)
print(f"{Colors.CYAN}Auto-detected {len(ports)} devices using static udev rules.{Colors.RESET}")
print(f"{Colors.CYAN}Auto-detected {len(ports)} devices (filtered from {len(unique_map) + (len(glob.glob('/dev/esp_port_*')) - len(unique_map))} aliases).{Colors.RESET}")
return [type('obj', (object,), {'device': p}) for p in ports]
except Exception:
pass
@ -344,6 +368,81 @@ class UnifiedDeployWorker:
self.log.error(f"Flash Prep Error: {e}")
return False
def update_udev_map(dry_run=False):
"""
Scans all USB serial devices, sorts them by physical topology (Bus/Port),
and generates a udev rule file to map them to /dev/esp_port_XX.
"""
print(f"{Colors.BLUE}Scanning USB topology to generate stable port maps...{Colors.RESET}")
# Get all USB serial devices
devices = list(list_ports.grep("USB|ACM|CP210|FT232"))
if not devices:
print(f"{Colors.RED}No devices found.{Colors.RESET}")
return
# Sort by "location" (Physical USB path: e.g., 1-1.2.3)
# This guarantees esp_port_01 is always the first physical port.
devices.sort(key=lambda x: x.location if x.location else x.device)
generated_rules = []
print(f"{'Physical Path':<20} | {'Current Dev':<15} | {'Assigned Symlink'}")
print("-" * 65)
for i, dev in enumerate(devices):
port_num = i + 1
symlink = f"esp_port_{port_num}" # e.g., esp_port_1
# Get detailed udev info to find the stable physical path ID
try:
cmd = ['udevadm', 'info', '--name', dev.device, '--query=property']
proc = subprocess.run(cmd, capture_output=True, text=True)
props = dict(line.split('=', 1) for line in proc.stdout.splitlines() if '=' in line)
# ID_PATH is the robust physical identifier (e.g., pci-0000:00:14.0-usb-0:1.4.3:1.0)
dev_path = props.get('ID_PATH', '')
if not dev_path:
print(f"{Colors.YELLOW}Skipping {dev.device} (No ID_PATH found){Colors.RESET}")
continue
# Generate the rule
rule = f'SUBSYSTEM=="tty", ENV{{ID_PATH}}=="{dev_path}", SYMLINK+="{symlink}"'
generated_rules.append(rule)
print(f"{dev.location:<20} | {dev.device:<15} | {symlink}")
except Exception as e:
print(f"Error inspecting {dev.device}: {e}")
print("-" * 65)
rules_content = "# Auto-generated by esp32_deploy.py\n" + "\n".join(generated_rules) + "\n"
rule_file = "/etc/udev/rules.d/99-esp32-stable.rules"
if dry_run:
print(f"\n{Colors.YELLOW}--- DRY RUN: Rules that would be written to {rule_file} ---{Colors.RESET}")
print(rules_content)
else:
if os.geteuid() != 0:
print(f"\n{Colors.RED}ERROR: Root privileges required to write udev rules.{Colors.RESET}")
print(f"Run: sudo ./esp32_deploy.py --map-ports")
return
print(f"\nWriting rules to {rule_file}...")
try:
with open(rule_file, 'w') as f:
f.write(rules_content)
print("Reloading udev rules...")
subprocess.run(['udevadm', 'control', '--reload-rules'], check=True)
subprocess.run(['udevadm', 'trigger'], check=True)
print(f"{Colors.GREEN}Success! Devices re-mapped.{Colors.RESET}")
except Exception as e:
print(f"{Colors.RED}Failed to write rules: {e}{Colors.RESET}")
def parse_args():
parser = argparse.ArgumentParser(description='ESP32 Unified Deployment Tool')
parser.add_argument('-i', '--interactive', action='store_true', help='Prompt for build options')
@ -380,8 +479,9 @@ def parse_args():
parser.add_argument('-M', '--mode', default='STA')
parser.add_argument('-mc', '--monitor-channel', type=int, default=36)
parser.add_argument('--csi', dest='csi_enable', action='store_true')
parser.add_argument('--map-ports', action='store_true', help="Rescan USB topology and generate udev rules for esp_port_xx")
args = parser.parse_args()
if args.target != 'all' and not args.start_ip and not args.check_version:
if args.target != 'all' and not args.start_ip and not args.check_version and not args.map_ports:
parser.error("the following arguments are required: --start-ip")
if args.config_only and args.flash_only: parser.error("Conflicting modes")
return args
@ -553,9 +653,22 @@ async def run_deployment(args):
print(f"\n{Colors.BLUE}Summary: {success}/{len(devs)} Success{Colors.RESET}")
def main():
if os.name == 'nt': asyncio.set_event_loop(asyncio.ProactorEventLoop())
try: asyncio.run(run_deployment(parse_args()))
except KeyboardInterrupt: sys.exit(1)
args = parse_args()
# --- INTERCEPT --map-ports HERE ---
if args.map_ports:
# Run synchronously, no async loop needed
update_udev_map(dry_run=False)
sys.exit(0)
# Standard async deployment flow
if os.name == 'nt':
asyncio.set_event_loop(asyncio.ProactorEventLoop())
try:
asyncio.run(run_deployment(args))
except KeyboardInterrupt:
sys.exit(1)
if __name__ == '__main__':
main()

View File

@ -18,6 +18,7 @@
#include "wifi_controller.h"
#include "wifi_cfg.h"
#include "app_console.h"
#include "iperf.h"
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_log.h"
@ -28,6 +29,25 @@
static const char *TAG = "MAIN";
// --- Global Prompt Buffer (Mutable) ---
static char s_cli_prompt[32] = "esp32> ";
// --- Prompt Updater ---
// This is called by app_console.c commands whenever a setting is changed.
void app_console_update_prompt(void) {
bool dirty = false;
// Check if any component has unsaved changes (RAM != NVS)
if (wifi_ctl_param_is_unsaved()) dirty = true;
if (iperf_param_is_unsaved()) dirty = true;
if (dirty) {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32*> ");
} else {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32> ");
}
}
// --- System Commands ---
static int cmd_restart(int argc, char **argv) {
@ -82,13 +102,14 @@ void app_main(void) {
// 4. Initialize WiFi Controller (Loads config from NVS automatically)
wifi_ctl_init();
iperf_param_init();
// 5. Initialize Console
esp_console_repl_t *repl = NULL;
esp_console_repl_config_t repl_config = ESP_CONSOLE_REPL_CONFIG_DEFAULT();
// This prompt is the anchor for your Python script
repl_config.prompt = "esp32> ";
// CRITICAL: Point the prompt to our mutable buffer
repl_config.prompt = s_cli_prompt;
repl_config.max_cmdline_length = 1024;
// Install UART driver for Console (Standard IO)
@ -99,7 +120,11 @@ void app_main(void) {
register_system_common();
app_console_register_commands();
// 7. Start Shell
// 7. Initial Prompt State Check
// (Sets it to "esp32*>" immediately if NVS is empty/dirty on boot)
app_console_update_prompt();
// 8. Start Shell
printf("\n ==================================================\n");
printf(" | ESP32 iPerf Shell - Ready |\n");
printf(" | Type 'help' for commands |\n");