#include #include #include #include #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_log.h" #include "esp_err.h" #include "esp_timer.h" #include "nvs_flash.h" #include "nvs.h" #include "esp_event.h" #include "esp_netif.h" #include "esp_wifi.h" #include "iperf.h" #include "status_led.h" static const char *TAG = "iperf"; static EventGroupHandle_t s_iperf_event_group = NULL; #define IPERF_IP_READY_BIT (1 << 0) #define IPERF_STOP_REQ_BIT (1 << 1) // Check rate every 500ms #define RATE_CHECK_INTERVAL_US 500000 // Minimum gap (Safety Limit) #define MIN_PACING_INTERVAL_US 100 typedef struct { iperf_cfg_t cfg; bool finish; uint32_t buffer_len; uint8_t *buffer; } iperf_ctrl_t; static iperf_ctrl_t s_iperf_ctrl = {0}; static TaskHandle_t s_iperf_task_handle = NULL; static esp_event_handler_instance_t instance_any_id; static esp_event_handler_instance_t instance_got_ip; static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (s_iperf_event_group == NULL) return; if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT); } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) { xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT); status_led_set_state(LED_STATE_NO_CONFIG); // Yellow } } static bool iperf_wait_for_ip(void) { if (!s_iperf_event_group) s_iperf_event_group = xEventGroupCreate(); ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &iperf_network_event_handler, NULL, &instance_any_id)); ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &iperf_network_event_handler, NULL, &instance_got_ip)); esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"); if (netif) { esp_netif_ip_info_t ip_info; if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) { xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT); } } EventBits_t bits = xEventGroupWaitBits(s_iperf_event_group, IPERF_IP_READY_BIT | IPERF_STOP_REQ_BIT, pdFALSE, pdFALSE, portMAX_DELAY); esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id); esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip); return !(bits & IPERF_STOP_REQ_BIT); } static void trim_whitespace(char *str) { char *end = str + strlen(str) - 1; while(end > str && isspace((unsigned char)*end)) end--; *(end+1) = 0; } static void iperf_read_nvs_config(iperf_cfg_t *cfg) { nvs_handle_t my_handle; if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return; uint32_t val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val; size_t req; if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) { char *ip_str = malloc(req); if (ip_str) { nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req); trim_whitespace(ip_str); cfg->dip = inet_addr(ip_str); free(ip_str); } } nvs_close(my_handle); } void iperf_set_pps(uint32_t pps) { if (pps == 0) pps = 1; uint32_t period_us = 1000000 / pps; if (period_us < MIN_PACING_INTERVAL_US) { period_us = MIN_PACING_INTERVAL_US; ESP_LOGW(TAG, "PPS %" PRIu32 " clamped to max safe rate", pps); } if (s_iperf_task_handle != NULL) { s_iperf_ctrl.cfg.pacing_period_us = period_us; ESP_LOGI(TAG, "Runtime pacing updated to %" PRIu32 " PPS", pps); } else { s_iperf_ctrl.cfg.pacing_period_us = period_us; } } uint32_t iperf_get_pps(void) { if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0; return 1000000 / s_iperf_ctrl.cfg.pacing_period_us; } static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) { if (!iperf_wait_for_ip()) return ESP_FAIL; struct sockaddr_in addr; addr.sin_family = AF_INET; addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001); addr.sin_addr.s_addr = ctrl->cfg.dip; int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (sockfd < 0) { status_led_set_state(LED_STATE_FAILED); return ESP_FAIL; } status_led_set_state(LED_STATE_TRANSMITTING_SLOW); // Default state int64_t next_send_time = esp_timer_get_time(); int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL; int64_t last_rate_check = esp_timer_get_time(); uint32_t packets_since_check = 0; int64_t enomem_start_time = 0; while (!ctrl->finish && esp_timer_get_time() < end_time) { int64_t now = esp_timer_get_time(); int64_t wait = next_send_time - now; if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000)); else while (esp_timer_get_time() < next_send_time) taskYIELD(); for (int k = 0; k < ctrl->cfg.burst_count; k++) { int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)); if (sent > 0) { packets_since_check++; enomem_start_time = 0; // --- DYNAMIC RATE HEALTH CHECK --- if (now - last_rate_check > RATE_CHECK_INTERVAL_US) { int64_t interval = now - last_rate_check; double cycles = (double)interval / (double)ctrl->cfg.pacing_period_us; uint32_t expected_pkts = (uint32_t)(cycles * ctrl->cfg.burst_count); // Threshold: 75% of expected rate uint32_t threshold = (expected_pkts * 3) / 4; led_state_t target = (packets_since_check >= threshold) ? LED_STATE_TRANSMITTING // Busy (Fast Flash) : LED_STATE_TRANSMITTING_SLOW; // Slow (Slow Pulse) if (status_led_get_state() != target) status_led_set_state(target); last_rate_check = now; packets_since_check = 0; } } else { if (errno == 12) { // ENOMEM if (status_led_get_state() != LED_STATE_STALLED) status_led_set_state(LED_STATE_STALLED); if (enomem_start_time == 0) enomem_start_time = now; else if (now - enomem_start_time > 10000000) { status_led_set_state(LED_STATE_FAILED); goto exit; } vTaskDelay(pdMS_TO_TICKS(10)); } else { status_led_set_state(LED_STATE_FAILED); goto exit; } } } next_send_time += ctrl->cfg.pacing_period_us; } exit: if (status_led_get_state() != LED_STATE_FAILED) { EventBits_t bits = xEventGroupGetBits(s_iperf_event_group); status_led_set_state((bits & IPERF_IP_READY_BIT) ? LED_STATE_CONNECTED : LED_STATE_NO_CONFIG); } close(sockfd); return ESP_OK; } static void iperf_task(void *arg) { iperf_start_udp_client((iperf_ctrl_t *)arg); free(((iperf_ctrl_t *)arg)->buffer); vTaskDelete(NULL); } void iperf_start(iperf_cfg_t *cfg) { if (s_iperf_task_handle) return; s_iperf_ctrl.cfg = *cfg; if (s_iperf_ctrl.cfg.send_len == 0) s_iperf_ctrl.cfg.send_len = 1470; if (s_iperf_ctrl.cfg.pacing_period_us == 0) s_iperf_ctrl.cfg.pacing_period_us = 10000; if (s_iperf_ctrl.cfg.burst_count == 0) s_iperf_ctrl.cfg.burst_count = 1; iperf_read_nvs_config(&s_iperf_ctrl.cfg); s_iperf_ctrl.finish = false; s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128; s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len); s_iperf_event_group = xEventGroupCreate(); xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle); } void iperf_stop(void) { if (s_iperf_task_handle) { s_iperf_ctrl.finish = true; if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); } }