#include #include #include #include #include #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_log.h" #include "esp_err.h" #include "esp_timer.h" #include "nvs_flash.h" #include "nvs.h" #include "esp_event.h" #include "esp_netif.h" #include "esp_wifi.h" #include "iperf.h" #include "status_led.h" static const char *TAG = "iperf"; static EventGroupHandle_t s_iperf_event_group = NULL; #define IPERF_IP_READY_BIT (1 << 0) #define IPERF_STOP_REQ_BIT (1 << 1) #define MIN_RATE_CHECK_INTERVAL_US 250000 #define MIN_PACING_INTERVAL_US 100 typedef struct { iperf_cfg_t cfg; bool finish; uint32_t buffer_len; uint8_t *buffer; } iperf_ctrl_t; static iperf_ctrl_t s_iperf_ctrl = {0}; static TaskHandle_t s_iperf_task_handle = NULL; // Global Stats Tracker static iperf_stats_t s_stats = {0}; // --- Session Persistence Variables --- // These persist after the task stops for post-analysis static int64_t s_session_start_time = 0; static int64_t s_session_end_time = 0; static uint64_t s_session_packets = 0; // --- State Duration & Edge Counters --- typedef enum { IPERF_STATE_IDLE = 0, IPERF_STATE_TX, IPERF_STATE_TX_SLOW, IPERF_STATE_TX_STALLED } iperf_fsm_state_t; static int64_t s_time_tx_us = 0; static int64_t s_time_slow_us = 0; static int64_t s_time_stalled_us = 0; static uint32_t s_edge_tx = 0; static uint32_t s_edge_slow = 0; static uint32_t s_edge_stalled = 0; static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE; static esp_event_handler_instance_t instance_any_id; static esp_event_handler_instance_t instance_got_ip; // --- Status Reporting --- void iperf_get_stats(iperf_stats_t *stats) { if (stats) { s_stats.config_pps = (s_iperf_ctrl.cfg.pacing_period_us > 0) ? (1000000 / s_iperf_ctrl.cfg.pacing_period_us) : 0; *stats = s_stats; } } void iperf_print_status(void) { iperf_get_stats(&s_stats); // 1. Get Source IP char src_ip[32] = "0.0.0.0"; esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"); if (netif) { esp_netif_ip_info_t ip_info; if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) { inet_ntop(AF_INET, &ip_info.ip, src_ip, sizeof(src_ip)); } } // 2. Get Destination IP char dst_ip[32] = "0.0.0.0"; struct in_addr daddr; daddr.s_addr = s_iperf_ctrl.cfg.dip; inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip)); float err = 0.0f; if (s_stats.running && s_stats.config_pps > 0) { int32_t diff = (int32_t)s_stats.config_pps - (int32_t)s_stats.actual_pps; err = (float)diff * 100.0f / (float)s_stats.config_pps; } // 3. Compute Session Bandwidth float avg_bw_mbps = 0.0f; if (s_session_start_time > 0) { int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time; if (end_t > s_session_start_time) { double duration_sec = (double)(end_t - s_session_start_time) / 1000000.0; if (duration_sec > 0.001) { double total_bits = (double)s_session_packets * (double)s_iperf_ctrl.cfg.send_len * 8.0; avg_bw_mbps = (float)(total_bits / duration_sec / 1000000.0); } } } // 4. Calculate State Percentages double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us); if (total_us < 1.0) total_us = 1.0; // Prevent div/0 double pct_tx = ((double)s_time_tx_us / total_us) * 100.0; double pct_slow = ((double)s_time_slow_us / total_us) * 100.0; double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0; // Standard Stats printf("IPERF_STATUS: Src=%s, Dst=%s, Running=%d, Config=%" PRIu32 ", Actual=%" PRIu32 ", Err=%.1f%%, Pkts=%" PRIu64 ", AvgBW=%.2f Mbps\n", src_ip, dst_ip, s_stats.running, s_stats.config_pps, s_stats.actual_pps, err, s_session_packets, avg_bw_mbps); // New Format: Time + Percentage + Edges // Example: TX=15.15s/28.5% (15) printf("IPERF_STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n", (double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx, (double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow, (double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled); } // --- Network Events --- static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (s_iperf_event_group == NULL) return; if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT); } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) { xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT); status_led_set_state(LED_STATE_NO_CONFIG); } } static bool iperf_wait_for_ip(void) { if (!s_iperf_event_group) s_iperf_event_group = xEventGroupCreate(); esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"); if (netif) { esp_netif_ip_info_t ip_info; if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) { xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT); } } ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &iperf_network_event_handler, NULL, &instance_any_id)); ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &iperf_network_event_handler, NULL, &instance_got_ip)); ESP_LOGI(TAG, "Waiting for IP..."); EventBits_t bits = xEventGroupWaitBits(s_iperf_event_group, IPERF_IP_READY_BIT | IPERF_STOP_REQ_BIT, pdFALSE, pdFALSE, portMAX_DELAY); esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id); esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip); if (bits & IPERF_STOP_REQ_BIT) { ESP_LOGW(TAG, "Stop requested while waiting for IP"); return false; } ESP_LOGI(TAG, "IP Ready. Starting traffic."); return true; } static void trim_whitespace(char *str) { char *end = str + strlen(str) - 1; while(end > str && isspace((unsigned char)*end)) end--; *(end+1) = 0; } static void iperf_read_nvs_config(iperf_cfg_t *cfg) { nvs_handle_t my_handle; if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return; uint32_t val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val; if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val; size_t req; char buf[16]; req = sizeof(buf); if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, buf, &req) == ESP_OK) { if (strcmp(buf, "SERVER") == 0) cfg->flag |= IPERF_FLAG_SERVER; else cfg->flag |= IPERF_FLAG_CLIENT; } req = sizeof(buf); if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, buf, &req) == ESP_OK) { if (strcmp(buf, "TCP") == 0) cfg->flag |= IPERF_FLAG_TCP; else cfg->flag |= IPERF_FLAG_UDP; } if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) { char *ip_str = malloc(req); if (ip_str) { nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req); trim_whitespace(ip_str); cfg->dip = inet_addr(ip_str); free(ip_str); } } nvs_close(my_handle); } void iperf_set_pps(uint32_t pps) { if (pps == 0) pps = 1; uint32_t period_us = 1000000 / pps; if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US; if (s_iperf_task_handle != NULL) { s_iperf_ctrl.cfg.pacing_period_us = period_us; printf("IPERF_PPS_UPDATED: %" PRIu32 "\n", pps); } else { s_iperf_ctrl.cfg.pacing_period_us = period_us; } } uint32_t iperf_get_pps(void) { if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0; return 1000000 / s_iperf_ctrl.cfg.pacing_period_us; } static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) { if (!iperf_wait_for_ip()) { printf("IPERF_STOPPED\n"); return ESP_OK; } struct sockaddr_in addr; addr.sin_family = AF_INET; addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001); addr.sin_addr.s_addr = ctrl->cfg.dip; char ip_str[32]; inet_ntop(AF_INET, &addr.sin_addr, ip_str, sizeof(ip_str)); ESP_LOGI(TAG, "Client sending to %s:%d", ip_str, ntohs(addr.sin_port)); int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (sockfd < 0) { status_led_set_state(LED_STATE_FAILED); ESP_LOGE(TAG, "Socket creation failed: %d", errno); printf("IPERF_STOPPED\n"); return ESP_FAIL; } status_led_set_state(LED_STATE_TRANSMITTING_SLOW); // --- Session Start --- s_stats.running = true; s_session_start_time = esp_timer_get_time(); s_session_end_time = 0; // Clear previous end time s_session_packets = 0; // Reset FSM Counters s_time_tx_us = 0; s_time_slow_us = 0; s_time_stalled_us = 0; s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0; s_current_fsm_state = IPERF_STATE_IDLE; printf("IPERF_STARTED\n"); int64_t next_send_time = esp_timer_get_time(); int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL; int64_t last_rate_check = esp_timer_get_time(); uint32_t packets_since_check = 0; int32_t packet_id = 0; struct timespec ts; while (!ctrl->finish && esp_timer_get_time() < end_time) { int64_t now = esp_timer_get_time(); int64_t wait = next_send_time - now; if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000)); else while (esp_timer_get_time() < next_send_time) taskYIELD(); for (int k = 0; k < ctrl->cfg.burst_count; k++) { udp_datagram *hdr = (udp_datagram *)ctrl->buffer; hdr->id = htonl(packet_id++); clock_gettime(CLOCK_REALTIME, &ts); hdr->tv_sec = htonl(ts.tv_sec); hdr->tv_usec = htonl(ts.tv_nsec / 1000); hdr->id2 = hdr->id; int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)); if (sent > 0) { packets_since_check++; s_session_packets++; } else { if (errno != 12) { ESP_LOGE(TAG, "Send failed: %d", errno); status_led_set_state(LED_STATE_FAILED); goto exit; } vTaskDelay(pdMS_TO_TICKS(10)); } } now = esp_timer_get_time(); if (now - last_rate_check > RATE_CHECK_INTERVAL_US) { uint32_t interval_us = (uint32_t)(now - last_rate_check); if (interval_us > 0) { // Calculate Instantaneous PPS s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us); // --- FSM Logic --- uint32_t config_pps = iperf_get_pps(); uint32_t threshold = (config_pps * 3) / 4; iperf_fsm_state_t next_state; if (s_stats.actual_pps == 0) { next_state = IPERF_STATE_TX_STALLED; } else if (s_stats.actual_pps >= threshold) { next_state = IPERF_STATE_TX; } else { next_state = IPERF_STATE_TX_SLOW; } // Update Duration switch (next_state) { case IPERF_STATE_TX: s_time_tx_us += interval_us; break; case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break; case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break; default: break; } // Detect Edges if (next_state != s_current_fsm_state) { switch (next_state) { case IPERF_STATE_TX: s_edge_tx++; break; case IPERF_STATE_TX_SLOW: s_edge_slow++; break; case IPERF_STATE_TX_STALLED: s_edge_stalled++; break; default: break; } s_current_fsm_state = next_state; } // Update LED based on state led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW; if (status_led_get_state() != led_target) status_led_set_state(led_target); } last_rate_check = now; packets_since_check = 0; } next_send_time += ctrl->cfg.pacing_period_us; } exit: // Termination Packets { udp_datagram *hdr = (udp_datagram *)ctrl->buffer; int32_t final_id = -packet_id; hdr->id = htonl(final_id); hdr->id2 = hdr->id; clock_gettime(CLOCK_REALTIME, &ts); hdr->tv_sec = htonl(ts.tv_sec); hdr->tv_usec = htonl(ts.tv_nsec / 1000); for(int i=0; i<10; i++) { sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)); vTaskDelay(pdMS_TO_TICKS(2)); } ESP_LOGI(TAG, "Sent termination packets (ID: %ld)", (long)final_id); } close(sockfd); s_stats.running = false; // --- Session Stop --- // Capture time exactly when loop exits. // This allows accurate bandwidth calculation after the test stops. s_session_end_time = esp_timer_get_time(); s_stats.actual_pps = 0; status_led_set_state(LED_STATE_CONNECTED); printf("IPERF_STOPPED\n"); return ESP_OK; } static void iperf_task(void *arg) { iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg; if (ctrl->cfg.flag & IPERF_FLAG_UDP && ctrl->cfg.flag & IPERF_FLAG_CLIENT) { iperf_start_udp_client(ctrl); } free(ctrl->buffer); s_iperf_task_handle = NULL; vTaskDelete(NULL); } void iperf_start(iperf_cfg_t *cfg) { if (s_iperf_task_handle) { ESP_LOGW(TAG, "Iperf already running"); return; } s_iperf_ctrl.cfg = *cfg; iperf_read_nvs_config(&s_iperf_ctrl.cfg); if (s_iperf_ctrl.cfg.send_len == 0) s_iperf_ctrl.cfg.send_len = 1470; if (s_iperf_ctrl.cfg.pacing_period_us == 0) s_iperf_ctrl.cfg.pacing_period_us = 10000; if (s_iperf_ctrl.cfg.burst_count == 0) s_iperf_ctrl.cfg.burst_count = 1; s_iperf_ctrl.finish = false; s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128; s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len); s_iperf_event_group = xEventGroupCreate(); xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle); } void iperf_stop(void) { if (s_iperf_task_handle) { s_iperf_ctrl.finish = true; if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); } else { printf("IPERF_STOPPED\n"); } }