ESP32/components/iperf/iperf.c

487 lines
17 KiB
C

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_timer.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "esp_wifi.h"
#include "iperf.h"
#include "status_led.h"
static const char *TAG = "iperf";
static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1)
#define RATE_CHECK_INTERVAL_US 500000
#define MIN_PACING_INTERVAL_US 100
typedef struct {
iperf_cfg_t cfg;
bool finish;
uint32_t buffer_len;
uint8_t *buffer;
} iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0};
static TaskHandle_t s_iperf_task_handle = NULL;
static iperf_cfg_t s_next_cfg; // Holding area for the new config
static bool s_reload_req = false; // Flag to trigger internal restart
// Global Stats Tracker
static iperf_stats_t s_stats = {0};
// --- Session Persistence Variables ---
static int64_t s_session_start_time = 0;
static int64_t s_session_end_time = 0;
static uint64_t s_session_packets = 0;
// --- State Duration & Edge Counters ---
typedef enum {
IPERF_STATE_IDLE = 0,
IPERF_STATE_TX,
IPERF_STATE_TX_SLOW,
IPERF_STATE_TX_STALLED
} iperf_fsm_state_t;
static int64_t s_time_tx_us = 0;
static int64_t s_time_slow_us = 0;
static int64_t s_time_stalled_us = 0;
static uint32_t s_edge_tx = 0;
static uint32_t s_edge_slow = 0;
static uint32_t s_edge_stalled = 0;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static esp_event_handler_instance_t instance_any_id;
static esp_event_handler_instance_t instance_got_ip;
// --- Helper: Pattern Initialization ---
// Fills buffer with 0-9 cyclic ASCII pattern (matches iperf2 "pattern" function)
static void iperf_pattern(uint8_t *buf, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
buf[i] = (i % 10) + '0';
}
}
// --- Helper: Generate Client Header ---
// Modified to set all zeros except HEADER_SEQNO64B
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
// Zero out the entire structure
memset(hdr, 0, sizeof(client_hdr_v1));
// Set only the SEQNO64B flag (Server will detect 64-bit seqno in UDP header)
hdr->flags = htonl(HEADER_SEQNO64B);
}
// ... [Existing Status Reporting & Event Handler Code] ...
void iperf_get_stats(iperf_stats_t *stats) {
if (stats) {
s_stats.config_pps = (s_iperf_ctrl.cfg.pacing_period_us > 0) ?
(1000000 / s_iperf_ctrl.cfg.pacing_period_us) : 0;
*stats = s_stats;
}
}
void iperf_print_status(void) {
iperf_get_stats(&s_stats);
// 1. Get Source IP
char src_ip[32] = "0.0.0.0";
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) {
inet_ntop(AF_INET, &ip_info.ip, src_ip, sizeof(src_ip));
}
}
// 2. Get Destination IP
char dst_ip[32] = "0.0.0.0";
struct in_addr daddr;
daddr.s_addr = s_iperf_ctrl.cfg.dip;
inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip));
float err = 0.0f;
if (s_stats.running && s_stats.config_pps > 0) {
int32_t diff = (int32_t)s_stats.config_pps - (int32_t)s_stats.actual_pps;
err = (float)diff * 100.0f / (float)s_stats.config_pps;
}
// 3. Compute Session Bandwidth
float avg_bw_mbps = 0.0f;
if (s_session_start_time > 0) {
int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time;
if (end_t > s_session_start_time) {
double duration_sec = (double)(end_t - s_session_start_time) / 1000000.0;
if (duration_sec > 0.001) {
double total_bits = (double)s_session_packets * (double)s_iperf_ctrl.cfg.send_len * 8.0;
avg_bw_mbps = (float)(total_bits / duration_sec / 1000000.0);
}
}
}
// 4. Calculate State Percentages
double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us);
if (total_us < 1.0) total_us = 1.0;
double pct_tx = ((double)s_time_tx_us / total_us) * 100.0;
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Standard Stats
printf("IPERF_STATUS: Src=%s, Dst=%s, Running=%d, Config=%" PRIu32 ", Actual=%" PRIu32 ", Err=%.1f%%, Pkts=%" PRIu64 ", AvgBW=%.2f Mbps\n",
src_ip, dst_ip, s_stats.running, s_stats.config_pps, s_stats.actual_pps, err, s_session_packets, avg_bw_mbps);
// New Format: Time + Percentage + Edges
printf("IPERF_STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
(double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx,
(double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow,
(double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled);
}
// --- Network Events ---
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
status_led_set_state(LED_STATE_NO_CONFIG);
}
}
static bool iperf_wait_for_ip(void) {
if (!s_iperf_event_group) s_iperf_event_group = xEventGroupCreate();
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
}
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &iperf_network_event_handler, NULL, &instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &iperf_network_event_handler, NULL, &instance_got_ip));
ESP_LOGI(TAG, "Waiting for IP...");
EventBits_t bits = xEventGroupWaitBits(s_iperf_event_group, IPERF_IP_READY_BIT | IPERF_STOP_REQ_BIT, pdFALSE, pdFALSE, portMAX_DELAY);
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
if (bits & IPERF_STOP_REQ_BIT) {
ESP_LOGW(TAG, "Stop requested while waiting for IP");
return false;
}
ESP_LOGI(TAG, "IP Ready. Starting traffic.");
return true;
}
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
size_t req;
char buf[16];
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, buf, &req) == ESP_OK) {
if (strcmp(buf, "SERVER") == 0) cfg->flag |= IPERF_FLAG_SERVER;
else cfg->flag |= IPERF_FLAG_CLIENT;
}
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, buf, &req) == ESP_OK) {
if (strcmp(buf, "TCP") == 0) cfg->flag |= IPERF_FLAG_TCP;
else cfg->flag |= IPERF_FLAG_UDP;
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
cfg->dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
printf("IPERF_PPS_UPDATED: %" PRIu32 "\n", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
// --- UPDATED UDP Client ---
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) {
printf("IPERF_STOPPED\n");
return ESP_OK;
}
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001);
addr.sin_addr.s_addr = ctrl->cfg.dip;
char ip_str[32];
inet_ntop(AF_INET, &addr.sin_addr, ip_str, sizeof(ip_str));
ESP_LOGI(TAG, "Client sending to %s:%d", ip_str, ntohs(addr.sin_port));
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
status_led_set_state(LED_STATE_FAILED);
ESP_LOGE(TAG, "Socket creation failed: %d", errno);
printf("IPERF_STOPPED\n");
return ESP_FAIL;
}
status_led_set_state(LED_STATE_TRANSMITTING_SLOW);
// --- Prepare Headers ---
udp_datagram *udp_hdr = (udp_datagram *)ctrl->buffer;
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
// Fill Client Header once with just the FLAG set.
// This is idempotent, so sending it every time is fine and allows server to detect settings.
iperf_generate_client_hdr(&ctrl->cfg, client_hdr);
// --- Session Start ---
s_stats.running = true;
s_session_start_time = esp_timer_get_time();
s_session_end_time = 0;
s_session_packets = 0;
// Reset FSM
s_time_tx_us = 0; s_time_slow_us = 0; s_time_stalled_us = 0;
s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0;
s_current_fsm_state = IPERF_STATE_IDLE;
printf("IPERF_STARTED\n");
int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0;
// --- Use 64-bit integer for Packet ID ---
int64_t packet_id = 0;
struct timespec ts;
while (!ctrl->finish && esp_timer_get_time() < end_time) {
int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000));
else while (esp_timer_get_time() < next_send_time) taskYIELD();
for (int k = 0; k < ctrl->cfg.burst_count; k++) {
// Update UDP Header (Seq/Time)
int64_t current_id = packet_id++;
// --- SPLIT 64-BIT ID ---
// Server logic: packetID = ntohl(id) | (ntohl(id2) << 32)
udp_hdr->id = htonl((uint32_t)(current_id & 0xFFFFFFFF));
udp_hdr->id2 = htonl((uint32_t)((current_id >> 32) & 0xFFFFFFFF));
clock_gettime(CLOCK_REALTIME, &ts);
udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000);
int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (sent > 0) {
packets_since_check++;
s_session_packets++;
} else {
if (errno != 12) {
ESP_LOGE(TAG, "Send failed: %d", errno);
status_led_set_state(LED_STATE_FAILED);
goto exit;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
}
now = esp_timer_get_time();
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
uint32_t interval_us = (uint32_t)(now - last_rate_check);
if (interval_us > 0) {
s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us);
uint32_t config_pps = iperf_get_pps();
uint32_t threshold = (config_pps * 3) / 4;
iperf_fsm_state_t next_state;
if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED;
else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX;
else next_state = IPERF_STATE_TX_SLOW;
switch (next_state) {
case IPERF_STATE_TX: s_time_tx_us += interval_us; break;
case IPERF_STATE_TX_SLOW: s_time_slow_us += interval_us; break;
case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break;
default: break;
}
if (next_state != s_current_fsm_state) {
switch (next_state) {
case IPERF_STATE_TX: s_edge_tx++; break;
case IPERF_STATE_TX_SLOW: s_edge_slow++; break;
case IPERF_STATE_TX_STALLED: s_edge_stalled++; break;
default: break;
}
s_current_fsm_state = next_state;
}
led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW;
if (status_led_get_state() != led_target) status_led_set_state(led_target);
}
last_rate_check = now;
packets_since_check = 0;
}
next_send_time += ctrl->cfg.pacing_period_us;
}
exit:
// Termination Packets
{
udp_datagram *hdr = (udp_datagram *)ctrl->buffer;
// --- NEGATED 64-BIT TERMINATION ID ---
// Server logic: if (packetID < 0) terminate = true;
int64_t final_id = -packet_id;
hdr->id = htonl((uint32_t)(final_id & 0xFFFFFFFF));
hdr->id2 = htonl((uint32_t)((final_id >> 32) & 0xFFFFFFFF));
clock_gettime(CLOCK_REALTIME, &ts);
hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
hdr->tv_usec = htonl(ts.tv_nsec / 1000);
for(int i=0; i<10; i++) {
sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
vTaskDelay(pdMS_TO_TICKS(2));
}
ESP_LOGI(TAG, "Sent termination packets (ID: %" PRId64 ")", final_id);
}
close(sockfd);
s_stats.running = false;
s_session_end_time = esp_timer_get_time();
s_stats.actual_pps = 0;
status_led_set_state(LED_STATE_CONNECTED);
printf("IPERF_STOPPED\n");
return ESP_OK;
}
static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
do {
s_reload_req = false;
ctrl->finish = false;
xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
if (ctrl->cfg.flag & IPERF_FLAG_UDP && ctrl->cfg.flag & IPERF_FLAG_CLIENT) {
iperf_start_udp_client(ctrl);
}
if (s_reload_req) {
ESP_LOGI(TAG, "Hot reloading iperf task with new config...");
ctrl->cfg = s_next_cfg;
vTaskDelay(pdMS_TO_TICKS(100));
}
} while (s_reload_req);
free(ctrl->buffer);
s_iperf_task_handle = NULL;
vTaskDelete(NULL);
}
void iperf_start(iperf_cfg_t *cfg) {
iperf_cfg_t new_cfg = *cfg;
iperf_read_nvs_config(&new_cfg);
if (new_cfg.send_len == 0) new_cfg.send_len = 1470;
if (new_cfg.pacing_period_us == 0) new_cfg.pacing_period_us = 10000;
if (new_cfg.burst_count == 0) new_cfg.burst_count = 1;
if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Task running. Staging hot reload.");
s_next_cfg = new_cfg;
s_reload_req = true;
iperf_stop();
printf("IPERF_RELOADING\n");
return;
}
s_iperf_ctrl.cfg = new_cfg;
s_iperf_ctrl.finish = false;
if (s_iperf_ctrl.buffer == NULL) {
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
}
// Initialize Buffer Pattern
if (s_iperf_ctrl.buffer) {
iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len);
}
if (s_iperf_event_group == NULL) {
s_iperf_event_group = xEventGroupCreate();
}
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
}
void iperf_stop(void) {
if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} else {
printf("IPERF_STOPPED\n");
}
}