318 lines
10 KiB
C
318 lines
10 KiB
C
#include "gps_sync.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/uart.h"
|
|
#include "esp_timer.h"
|
|
#include "esp_log.h"
|
|
#include "esp_rom_sys.h"
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <inttypes.h> // Required for PRIu64
|
|
|
|
// --- SAFE WIRING FOR ESP32-C5 ---
|
|
#define GPS_UART_NUM UART_NUM_1
|
|
#define GPS_RX_PIN GPIO_NUM_23
|
|
#define GPS_TX_PIN GPIO_NUM_24
|
|
#define PPS_GPIO GPIO_NUM_25
|
|
#define GPS_BAUD_RATE 9600
|
|
#define UART_BUF_SIZE 1024
|
|
|
|
static const char *TAG = "GPS_SYNC";
|
|
|
|
// GPS sync state
|
|
static int64_t monotonic_offset_us = 0;
|
|
static volatile int64_t last_pps_monotonic = 0;
|
|
static volatile time_t next_pps_gps_second = 0;
|
|
static bool gps_has_fix = false;
|
|
static bool use_gps_for_logs = false;
|
|
static SemaphoreHandle_t sync_mutex;
|
|
|
|
// Force update flag (defaults to true so boot-up snaps immediately)
|
|
static volatile bool force_sync_update = true;
|
|
|
|
// PPS interrupt - captures exact monotonic time at second boundary
|
|
static void IRAM_ATTR pps_isr_handler(void* arg) {
|
|
static bool onetime = true;
|
|
last_pps_monotonic = esp_timer_get_time();
|
|
if (onetime) {
|
|
esp_rom_printf("PPS connected!\n");
|
|
onetime = false;
|
|
}
|
|
}
|
|
|
|
// Parse GPS time from NMEA sentence
|
|
static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
|
|
if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) {
|
|
return false;
|
|
}
|
|
|
|
char *p = strchr(nmea, ',');
|
|
if (!p) return false;
|
|
|
|
// Time field
|
|
p++;
|
|
int hour, min, sec;
|
|
if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) {
|
|
return false;
|
|
}
|
|
|
|
// Status field (A=valid, V=invalid)
|
|
p = strchr(p, ',');
|
|
if (!p) return false;
|
|
p++;
|
|
*valid = (*p == 'A');
|
|
|
|
// Skip to date field (8 commas ahead from time)
|
|
for (int i = 0; i < 7; i++) {
|
|
p = strchr(p, ',');
|
|
if (!p) return false;
|
|
p++;
|
|
}
|
|
|
|
// Date field: ddmmyy
|
|
int day, month, year;
|
|
if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) {
|
|
return false;
|
|
}
|
|
|
|
year += (year < 80) ? 2000 : 1900;
|
|
|
|
tm_out->tm_sec = sec;
|
|
tm_out->tm_min = min;
|
|
tm_out->tm_hour = hour;
|
|
tm_out->tm_mday = day;
|
|
tm_out->tm_mon = month - 1;
|
|
tm_out->tm_year = year - 1900;
|
|
tm_out->tm_isdst = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Force the next GPS update to snap immediately (bypass filter)
|
|
void gps_force_next_update(void) {
|
|
force_sync_update = true;
|
|
ESP_LOGW(TAG, "Requesting forced GPS sync update");
|
|
}
|
|
|
|
// GPS processing task
|
|
static void gps_task(void* arg) {
|
|
char line[128];
|
|
int pos = 0;
|
|
|
|
while (1) {
|
|
uint8_t data;
|
|
int len = uart_read_bytes(GPS_UART_NUM, &data, 1, 100 / portTICK_PERIOD_MS);
|
|
|
|
if (len > 0) {
|
|
if (data == '\n') {
|
|
line[pos] = '\0';
|
|
|
|
struct tm gps_tm;
|
|
bool valid;
|
|
if (parse_gprmc(line, &gps_tm, &valid)) {
|
|
if (valid) {
|
|
time_t gps_time = mktime(&gps_tm);
|
|
|
|
xSemaphoreTake(sync_mutex, portMAX_DELAY);
|
|
next_pps_gps_second = gps_time + 1;
|
|
xSemaphoreGive(sync_mutex);
|
|
|
|
vTaskDelay(pdMS_TO_TICKS(300));
|
|
|
|
xSemaphoreTake(sync_mutex, portMAX_DELAY);
|
|
if (last_pps_monotonic > 0) {
|
|
int64_t gps_us = (int64_t)next_pps_gps_second * 1000000LL;
|
|
int64_t new_offset = gps_us - last_pps_monotonic;
|
|
|
|
if (monotonic_offset_us == 0 || force_sync_update) {
|
|
monotonic_offset_us = new_offset;
|
|
|
|
if (force_sync_update) {
|
|
ESP_LOGW(TAG, "GPS sync SNAP: Offset forced to %lld us", monotonic_offset_us);
|
|
force_sync_update = false;
|
|
}
|
|
} else {
|
|
// Low-pass filter: 90% old + 10% new
|
|
monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
|
|
}
|
|
|
|
gps_has_fix = true;
|
|
|
|
ESP_LOGI(TAG, "GPS sync: %04d-%02d-%02d %02d:%02d:%02d, offset=%lld us",
|
|
gps_tm.tm_year + 1900, gps_tm.tm_mon + 1, gps_tm.tm_mday,
|
|
gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
|
|
monotonic_offset_us);
|
|
}
|
|
xSemaphoreGive(sync_mutex);
|
|
} else {
|
|
gps_has_fix = false;
|
|
}
|
|
}
|
|
|
|
pos = 0;
|
|
} else if (pos < sizeof(line) - 1) {
|
|
line[pos++] = data;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void gps_sync_init(bool use_gps_log_timestamps) {
|
|
ESP_LOGI(TAG, "Initializing GPS sync");
|
|
|
|
use_gps_for_logs = use_gps_log_timestamps;
|
|
|
|
// Ensure we start with a forced update
|
|
gps_force_next_update();
|
|
|
|
if (use_gps_log_timestamps) {
|
|
ESP_LOGI(TAG, "ESP_LOG timestamps: GPS time in seconds.milliseconds format");
|
|
// Override vprintf to add decimal point to timestamps
|
|
esp_log_set_vprintf(gps_log_vprintf);
|
|
}
|
|
|
|
sync_mutex = xSemaphoreCreateMutex();
|
|
|
|
uart_config_t uart_config = {
|
|
.baud_rate = GPS_BAUD_RATE,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
.source_clk = UART_SCLK_DEFAULT,
|
|
};
|
|
|
|
ESP_ERROR_CHECK(uart_driver_install(GPS_UART_NUM, UART_BUF_SIZE, 0, 0, NULL, 0));
|
|
ESP_ERROR_CHECK(uart_param_config(GPS_UART_NUM, &uart_config));
|
|
ESP_ERROR_CHECK(uart_set_pin(GPS_UART_NUM, GPS_TX_PIN, GPS_RX_PIN,
|
|
UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
|
|
|
|
gpio_config_t io_conf = {
|
|
.intr_type = GPIO_INTR_POSEDGE,
|
|
.mode = GPIO_MODE_INPUT,
|
|
.pin_bit_mask = (1ULL << PPS_GPIO),
|
|
.pull_up_en = GPIO_PULLUP_ENABLE,
|
|
.pull_down_en = GPIO_PULLDOWN_DISABLE,
|
|
};
|
|
ESP_ERROR_CHECK(gpio_config(&io_conf));
|
|
|
|
ESP_ERROR_CHECK(gpio_install_isr_service(0));
|
|
ESP_ERROR_CHECK(gpio_isr_handler_add(PPS_GPIO, pps_isr_handler, NULL));
|
|
|
|
xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL);
|
|
|
|
ESP_LOGI(TAG, "GPS sync initialized (RX=GPIO%d, PPS=GPIO%d)", GPS_RX_PIN, PPS_GPIO);
|
|
}
|
|
|
|
gps_timestamp_t gps_get_timestamp(void) {
|
|
gps_timestamp_t ts;
|
|
|
|
// Using clock_gettime (POSIX standard, portable)
|
|
clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts);
|
|
|
|
xSemaphoreTake(sync_mutex, portMAX_DELAY);
|
|
|
|
// Convert timespec to microseconds
|
|
ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL +
|
|
ts.mono_ts.tv_nsec / 1000;
|
|
|
|
// Convert to milliseconds
|
|
ts.monotonic_ms = ts.monotonic_us / 1000;
|
|
|
|
// Calculate GPS time
|
|
ts.gps_us = ts.monotonic_us + monotonic_offset_us;
|
|
ts.gps_ms = ts.gps_us / 1000;
|
|
|
|
ts.synced = gps_has_fix;
|
|
xSemaphoreGive(sync_mutex);
|
|
|
|
return ts;
|
|
}
|
|
|
|
int64_t gps_get_monotonic_ms(void) {
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return (int64_t)ts.tv_sec * 1000LL + ts.tv_nsec / 1000000;
|
|
}
|
|
|
|
bool gps_is_synced(void) {
|
|
return gps_has_fix;
|
|
}
|
|
|
|
// ---------------- LOGGING SYSTEM INTERCEPTION ----------------
|
|
|
|
// We now only return standard system time (ms) to ESP-IDF.
|
|
// We do NOT return GPS time here because it overflows 32 bits.
|
|
uint32_t gps_log_timestamp(void) {
|
|
return (uint32_t)(esp_timer_get_time() / 1000ULL);
|
|
}
|
|
|
|
// Intercepts the log line string before it is printed.
|
|
// It detects the timestamp `(1234)` which is monotonic ms,
|
|
// and mathematically converts it to `(+17544234.123)` GPS sec.ms
|
|
int gps_log_vprintf(const char *fmt, va_list args) {
|
|
static char buffer[512];
|
|
|
|
// Format the message into our buffer
|
|
int ret = vsnprintf(buffer, sizeof(buffer), fmt, args);
|
|
assert(ret >= 0);
|
|
|
|
if (use_gps_for_logs) {
|
|
// Look for timestamp pattern: "I (", "W (", etc.
|
|
char *timestamp_start = NULL;
|
|
for (int i = 0; buffer[i] != '\0' && i < sizeof(buffer) - 20; i++) {
|
|
if ((buffer[i] == 'I' || buffer[i] == 'W' || buffer[i] == 'E' ||
|
|
buffer[i] == 'D' || buffer[i] == 'V') &&
|
|
buffer[i+1] == ' ' && buffer[i+2] == '(') {
|
|
timestamp_start = &buffer[i+3];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (timestamp_start) {
|
|
char *timestamp_end = strchr(timestamp_start, ')');
|
|
if (timestamp_end) {
|
|
// Parse the MONOTONIC ms that ESP-IDF put there
|
|
uint32_t monotonic_log_ms = 0;
|
|
if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) {
|
|
|
|
char reformatted[512];
|
|
size_t prefix_len = timestamp_start - buffer;
|
|
memcpy(reformatted, buffer, prefix_len);
|
|
int decimal_len = 0;
|
|
|
|
if (gps_has_fix) {
|
|
// MATH: Calculate GPS time based on the log's monotonic time
|
|
int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000;
|
|
int64_t log_gps_us = log_mono_us + monotonic_offset_us;
|
|
|
|
// Split into Seconds and Milliseconds
|
|
uint64_t gps_sec = log_gps_us / 1000000;
|
|
uint32_t gps_ms = (log_gps_us % 1000000) / 1000;
|
|
|
|
decimal_len = snprintf(reformatted + prefix_len,
|
|
sizeof(reformatted) - prefix_len,
|
|
"+%" PRIu64 ".%03lu", gps_sec, gps_ms);
|
|
} else {
|
|
// No fix: just show monotonic nicely
|
|
uint32_t sec = monotonic_log_ms / 1000;
|
|
uint32_t ms = monotonic_log_ms % 1000;
|
|
decimal_len = snprintf(reformatted + prefix_len,
|
|
sizeof(reformatted) - prefix_len,
|
|
"*%lu.%03lu", sec, ms);
|
|
}
|
|
|
|
// Copy the rest of the message (from the closing parenthesis onwards)
|
|
strcpy(reformatted + prefix_len + decimal_len, timestamp_end);
|
|
|
|
return printf("%s", reformatted);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return printf("%s", buffer);
|
|
}
|