ESP32/main/main.c

395 lines
13 KiB
C

#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_wifi.h"
#include "nvs_flash.h"
#include "esp_netif.h"
#include "lwip/inet.h"
#include "led_strip.h"
#include "iperf.h"
#include "wifi_cfg.h"
#include "csi_log.h"
static const char *TAG = "main";
#if CONFIG_IDF_TARGET_ESP32S3
#define RGB_LED_GPIO 48
#elif CONFIG_IDF_TARGET_ESP32C5
#define RGB_LED_GPIO 27
#elif CONFIG_IDF_TARGET_ESP32C6
#define RGB_LED_GPIO 8
#elif CONFIG_IDF_TARGET_ESP32C3
#define RGB_LED_GPIO 8
#elif CONFIG_IDF_TARGET_ESP32S2
#define RGB_LED_GPIO 18
#elif CONFIG_IDF_TARGET_ESP32
#define RGB_LED_GPIO 2
#else
#error "Unsupported target - define RGB_LED_GPIO for your board"
#endif
static led_strip_handle_t led_strip;
static bool wifi_connected = false;
static bool has_config = false;
typedef enum {
LED_STATE_NO_CONFIG,
LED_STATE_WAITING,
LED_STATE_CONNECTED,
LED_STATE_FAILED
} led_state_t;
static led_state_t current_led_state = LED_STATE_NO_CONFIG;
static void rgb_led_init(void)
{
led_strip_config_t strip_config = {
.strip_gpio_num = RGB_LED_GPIO,
.max_leds = 1,
};
led_strip_rmt_config_t rmt_config = {
.resolution_hz = 10 * 1000 * 1000,
};
ESP_ERROR_CHECK(led_strip_new_rmt_device(&strip_config, &rmt_config, &led_strip));
led_strip_clear(led_strip);
ESP_LOGI(TAG, "WS2812 RGB LED initialized on GPIO %d", RGB_LED_GPIO);
}
static void set_led_color(uint8_t r, uint8_t g, uint8_t b)
{
led_strip_set_pixel(led_strip, 0, r, g, b);
led_strip_refresh(led_strip);
}
static void led_task(void *arg)
{
int blink_state = 0;
while(1) {
switch(current_led_state) {
case LED_STATE_NO_CONFIG:
set_led_color(255, 255, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_WAITING:
if (blink_state) {
set_led_color(0, 0, 255);
} else {
set_led_color(0, 0, 0);
}
blink_state = !blink_state;
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_CONNECTED:
set_led_color(0, 255, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_FAILED:
if (blink_state) {
set_led_color(255, 0, 0);
} else {
set_led_color(0, 0, 0);
}
blink_state = !blink_state;
vTaskDelay(pdMS_TO_TICKS(200));
break;
}
}
}
// --- CSI support ---------------------------------------------------
static bool s_csi_enabled = false;
static uint32_t s_csi_packet_count = 0;
static void csi_dump_task(void *arg) {
vTaskDelay(pdMS_TO_TICKS(20000));
csi_log_dump_over_uart();
vTaskDelete(NULL);
}
static void csi_cb(void *ctx, wifi_csi_info_t *info)
{
csi_log_append_record(info);
s_csi_packet_count++;
if ((s_csi_packet_count % 100) == 0) {
ESP_LOGI("CSI", "Captured %lu CSI packets", (unsigned long)s_csi_packet_count);
}
}
static void wifi_enable_csi_once(void) {
if (s_csi_enabled) {
return;
}
esp_err_t err;
vTaskDelay(pdMS_TO_TICKS(2000));
wifi_csi_config_t csi_cfg;
#if CONFIG_IDF_TARGET_ESP32C5
memset(&csi_cfg, 0, sizeof(csi_cfg));
csi_cfg.enable = true;
#elif CONFIG_IDF_TARGET_ESP32S3
memset(&csi_cfg, 0, sizeof(csi_cfg));
csi_cfg.lltf_en = true;
csi_cfg.htltf_en = true;
csi_cfg.stbc_htltf2_en = false;
csi_cfg.ltf_merge_en = false;
csi_cfg.channel_filter_en = false;
csi_cfg.manu_scale = false;
csi_cfg.shift = 0;
#else
#warning "CSI not supported for this target"
return;
#endif
ESP_LOGI("CSI", "Configuring CSI...");
err = esp_wifi_set_csi_config(&csi_cfg);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi_config failed: %s (0x%x)", esp_err_to_name(err), err);
return;
}
ESP_LOGI("CSI", "CSI config OK");
err = esp_wifi_set_csi_rx_cb(csi_cb, NULL);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi_rx_cb failed: %s", esp_err_to_name(err));
return;
}
ESP_LOGI("CSI", "CSI callback OK");
err = esp_wifi_set_csi(true);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi(true) failed: %s", esp_err_to_name(err));
return;
}
ESP_LOGI("CSI", "CSI enabled!");
s_csi_enabled = true;
}
static void csi_init_task(void *arg) {
wifi_enable_csi_once();
vTaskDelete(NULL);
}
static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT) {
switch (event_id) {
case WIFI_EVENT_STA_START:
ESP_LOGI(TAG, "WiFi started, attempting connection...");
if (has_config) {
current_led_state = LED_STATE_WAITING;
}
break;
case WIFI_EVENT_STA_DISCONNECTED:
wifi_event_sta_disconnected_t* event = (wifi_event_sta_disconnected_t*) event_data;
// Get SSID for better error messages
wifi_config_t wifi_cfg;
const char *ssid = "unknown";
if (esp_wifi_get_config(WIFI_IF_STA, &wifi_cfg) == ESP_OK) {
ssid = (const char*)wifi_cfg.sta.ssid;
}
// Log disconnect with reason-specific messages
switch (event->reason) {
case 201: // WIFI_REASON_NO_AP_FOUND
ESP_LOGE(TAG, "WiFi disconnected (reason 201): NO AP FOUND");
ESP_LOGE(TAG, " SSID attempted: '%s'", ssid);
ESP_LOGE(TAG, " Verify AP is broadcasting and in range");
break;
case 202: // WIFI_REASON_AUTH_FAIL
ESP_LOGE(TAG, "WiFi disconnected (reason 202): AUTH FAILED");
ESP_LOGE(TAG, " SSID: '%s'", ssid);
ESP_LOGE(TAG, " Check password is correct");
break;
case 15: // WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT
ESP_LOGE(TAG, "WiFi disconnected (reason 15): 4-WAY HANDSHAKE TIMEOUT");
ESP_LOGE(TAG, " SSID: '%s'", ssid);
ESP_LOGE(TAG, " Password may be incorrect");
break;
case 2: // WIFI_REASON_AUTH_EXPIRE
ESP_LOGW(TAG, "WiFi disconnected (reason 2): AUTH EXPIRED");
ESP_LOGW(TAG, " SSID: '%s' - will retry", ssid);
break;
case 8: // WIFI_REASON_ASSOC_LEAVE
ESP_LOGW(TAG, "WiFi disconnected (reason 8): STATION LEFT");
ESP_LOGW(TAG, " SSID: '%s' - normal disconnect", ssid);
break;
default:
ESP_LOGW(TAG, "WiFi disconnected from '%s', reason: %d", ssid, event->reason);
break;
}
if (!wifi_connected && has_config) {
current_led_state = LED_STATE_FAILED;
ESP_LOGE(TAG, "WiFi connection FAILED - RED LED blinking");
}
break;
}
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR " gw:" IPSTR " netmask:" IPSTR,
IP2STR(&event->ip_info.ip),
IP2STR(&event->ip_info.gw),
IP2STR(&event->ip_info.netmask));
wifi_connected = true;
current_led_state = LED_STATE_CONNECTED;
// Log connection details: SSID, band, channel, bandwidth, RSSI
wifi_config_t wifi_cfg;
wifi_ap_record_t ap_info;
if (esp_wifi_get_config(WIFI_IF_STA, &wifi_cfg) == ESP_OK &&
esp_wifi_sta_get_ap_info(&ap_info) == ESP_OK) {
// Determine band from channel
const char *band_str = "Unknown";
if (ap_info.primary >= 1 && ap_info.primary <= 14) {
band_str = "2.4GHz";
} else if (ap_info.primary >= 36) {
band_str = "5GHz";
}
// Get bandwidth - try dual-band API first, fallback to single-band
wifi_bandwidth_t bw = WIFI_BW_HT20; // Default to 20MHz
const char *bw_str = "Unknown";
bool bw_detected = false;
// Try esp_wifi_get_bandwidths() first (works on dual-band chips in auto mode)
wifi_bandwidths_t bandwidths = {0};
esp_err_t err = esp_wifi_get_bandwidths(WIFI_IF_STA, &bandwidths);
if (err == ESP_OK) {
// Dual-band API succeeded - select bandwidth based on current band
if (ap_info.primary >= 1 && ap_info.primary <= 14) {
// 2.4GHz band
bw = (wifi_bandwidth_t)bandwidths.ghz_2g;
bw_detected = true;
} else if (ap_info.primary >= 36) {
// 5GHz band
bw = (wifi_bandwidth_t)bandwidths.ghz_5g;
bw_detected = true;
}
} else {
// Dual-band API failed - try single-band API (ESP32-S3, older IDF)
err = esp_wifi_get_bandwidth(WIFI_IF_STA, &bw);
if (err == ESP_OK) {
bw_detected = true;
}
}
// Convert bandwidth enum to string
if (bw_detected) {
switch (bw) {
case WIFI_BW_HT20:
bw_str = "20MHz (HT20)";
break;
case WIFI_BW_HT40:
bw_str = "40MHz (HT40)";
break;
case WIFI_BW80:
bw_str = "80MHz (VHT80)";
break;
default:
bw_str = "Unknown";
break;
}
}
ESP_LOGI(TAG, "========================================");
ESP_LOGI(TAG, "WiFi CONNECTED - BLUE LED solid");
ESP_LOGI(TAG, " SSID: '%s'", wifi_cfg.sta.ssid);
ESP_LOGI(TAG, " Band: %s", band_str);
ESP_LOGI(TAG, " Bandwidth: %s", bw_str);
ESP_LOGI(TAG, " Channel: %d", ap_info.primary);
ESP_LOGI(TAG, " RSSI: %d dBm", ap_info.rssi);
ESP_LOGI(TAG, " BSSID: %02x:%02x:%02x:%02x:%02x:%02x",
ap_info.bssid[0], ap_info.bssid[1], ap_info.bssid[2],
ap_info.bssid[3], ap_info.bssid[4], ap_info.bssid[5]);
ESP_LOGI(TAG, "========================================");
} else {
ESP_LOGI(TAG, "WiFi CONNECTED - BLUE LED solid");
}
xTaskCreate(csi_init_task, "csi_init", 4096, NULL, 5, NULL);
vTaskDelay(pdMS_TO_TICKS(1000));
iperf_cfg_t cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.flag = IPERF_FLAG_SERVER | IPERF_FLAG_TCP;
cfg.sport = 5001;
iperf_start(&cfg);
ESP_LOGI(TAG, "iperf TCP server started on port 5001");
xTaskCreate(csi_dump_task, "csi_dump_task", 4096, NULL, 5, NULL);
}
}
void app_main(void) {
ESP_ERROR_CHECK(nvs_flash_init());
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
ESP_ERROR_CHECK(csi_log_init());
rgb_led_init();
xTaskCreate(led_task, "led_task", 4096, NULL, 5, NULL);
ESP_ERROR_CHECK(esp_event_handler_instance_register(
WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL, NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(
IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL, NULL));
wifi_cfg_init();
if (wifi_cfg_apply_from_nvs()) {
has_config = true;
current_led_state = LED_STATE_WAITING;
ESP_LOGI(TAG, "WiFi config loaded from NVS");
} else {
has_config = false;
current_led_state = LED_STATE_NO_CONFIG;
ESP_LOGI(TAG, "No WiFi config - YELLOW LED");
}
ESP_LOGI(TAG, "LED Status:");
ESP_LOGI(TAG, " YELLOW solid = NO CONFIG (send CFG/END)");
ESP_LOGI(TAG, " BLUE slow blink = Connecting");
ESP_LOGI(TAG, " BLUE solid = Connected ✓");
ESP_LOGI(TAG, " RED fast blink = Failed ✗");
while(1) {
vTaskDelay(pdMS_TO_TICKS(1000));
}
}