gps timestamps and gps sync works on C5

This commit is contained in:
Bob 2025-12-06 13:18:46 -08:00
parent 283d524fc5
commit 120c864f73
5 changed files with 225 additions and 452 deletions

View File

@ -1,5 +1,5 @@
idf_component_register(
SRCS "gps_sync.c"
INCLUDE_DIRS "include"
REQUIRES driver
INCLUDE_DIRS "."
REQUIRES driver log esp_timer esp_driver_gpio esp_driver_uart
)

View File

@ -3,15 +3,19 @@
#include "driver/uart.h"
#include "esp_timer.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <stdio.h>
#include <assert.h>
#include <inttypes.h> // Required for PRIu64
// --- SAFE WIRING FOR ESP32-C5 ---
#define GPS_UART_NUM UART_NUM_1
#define GPS_RX_PIN GPIO_NUM_4
#define GPS_TX_PIN GPIO_NUM_5
#define PPS_GPIO GPIO_NUM_1
#define GPS_RX_PIN GPIO_NUM_23
#define GPS_TX_PIN GPIO_NUM_24
#define PPS_GPIO GPIO_NUM_25
#define GPS_BAUD_RATE 9600
#define UART_BUF_SIZE 1024
@ -25,13 +29,17 @@ static bool gps_has_fix = false;
static bool use_gps_for_logs = false;
static SemaphoreHandle_t sync_mutex;
// For decimal timestamp formatting - stores last timestamp parts
static uint32_t last_timestamp_sec = 0;
static uint16_t last_timestamp_ms = 0;
// Force update flag (defaults to true so boot-up snaps immediately)
static volatile bool force_sync_update = true;
// PPS interrupt - captures exact monotonic time at second boundary
static void IRAM_ATTR pps_isr_handler(void* arg) {
static bool onetime = true;
last_pps_monotonic = esp_timer_get_time();
if (onetime) {
esp_rom_printf("PPS connected!\n");
onetime = false;
}
}
// Parse GPS time from NMEA sentence
@ -39,38 +47,38 @@ static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) {
return false;
}
char *p = strchr(nmea, ',');
if (!p) return false;
// Time field
p++;
int hour, min, sec;
if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) {
return false;
}
// Status field (A=valid, V=invalid)
p = strchr(p, ',');
if (!p) return false;
p++;
*valid = (*p == 'A');
// Skip to date field (8 commas ahead from time)
for (int i = 0; i < 7; i++) {
p = strchr(p, ',');
if (!p) return false;
p++;
}
// Date field: ddmmyy
int day, month, year;
if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) {
return false;
}
year += (year < 80) ? 2000 : 1900;
tm_out->tm_sec = sec;
tm_out->tm_min = min;
tm_out->tm_hour = hour;
@ -78,49 +86,60 @@ static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
tm_out->tm_mon = month - 1;
tm_out->tm_year = year - 1900;
tm_out->tm_isdst = 0;
return true;
}
// Force the next GPS update to snap immediately (bypass filter)
void gps_force_next_update(void) {
force_sync_update = true;
ESP_LOGW(TAG, "Requesting forced GPS sync update");
}
// GPS processing task
static void gps_task(void* arg) {
char line[128];
int pos = 0;
while (1) {
uint8_t data;
int len = uart_read_bytes(GPS_UART_NUM, &data, 1, 100 / portTICK_PERIOD_MS);
if (len > 0) {
if (data == '\n') {
line[pos] = '\0';
struct tm gps_tm;
bool valid;
if (parse_gprmc(line, &gps_tm, &valid)) {
if (valid) {
time_t gps_time = mktime(&gps_tm);
xSemaphoreTake(sync_mutex, portMAX_DELAY);
next_pps_gps_second = gps_time + 1;
xSemaphoreGive(sync_mutex);
vTaskDelay(pdMS_TO_TICKS(300));
xSemaphoreTake(sync_mutex, portMAX_DELAY);
if (last_pps_monotonic > 0) {
int64_t gps_us = (int64_t)next_pps_gps_second * 1000000LL;
int64_t new_offset = gps_us - last_pps_monotonic;
if (monotonic_offset_us == 0) {
if (monotonic_offset_us == 0 || force_sync_update) {
monotonic_offset_us = new_offset;
if (force_sync_update) {
ESP_LOGW(TAG, "GPS sync SNAP: Offset forced to %lld us", monotonic_offset_us);
force_sync_update = false;
}
} else {
// Low-pass filter: 90% old + 10% new
monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
}
gps_has_fix = true;
ESP_LOGI(TAG, "GPS sync: %04d-%02d-%02d %02d:%02d:%02d, offset=%lld us",
gps_tm.tm_year + 1900, gps_tm.tm_mon + 1, gps_tm.tm_mday,
gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
@ -131,7 +150,7 @@ static void gps_task(void* arg) {
gps_has_fix = false;
}
}
pos = 0;
} else if (pos < sizeof(line) - 1) {
line[pos++] = data;
@ -142,17 +161,20 @@ static void gps_task(void* arg) {
void gps_sync_init(bool use_gps_log_timestamps) {
ESP_LOGI(TAG, "Initializing GPS sync");
use_gps_for_logs = use_gps_log_timestamps;
// Ensure we start with a forced update
gps_force_next_update();
if (use_gps_log_timestamps) {
ESP_LOGI(TAG, "ESP_LOG timestamps: GPS time in seconds.milliseconds format");
// Override vprintf to add decimal point to timestamps
esp_log_set_vprintf(gps_log_vprintf);
}
sync_mutex = xSemaphoreCreateMutex();
uart_config_t uart_config = {
.baud_rate = GPS_BAUD_RATE,
.data_bits = UART_DATA_8_BITS,
@ -161,12 +183,12 @@ void gps_sync_init(bool use_gps_log_timestamps) {
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_DEFAULT,
};
ESP_ERROR_CHECK(uart_driver_install(GPS_UART_NUM, UART_BUF_SIZE, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(GPS_UART_NUM, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(GPS_UART_NUM, GPS_TX_PIN, GPS_RX_PIN,
ESP_ERROR_CHECK(uart_set_pin(GPS_UART_NUM, GPS_TX_PIN, GPS_RX_PIN,
UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_POSEDGE,
.mode = GPIO_MODE_INPUT,
@ -175,47 +197,43 @@ void gps_sync_init(bool use_gps_log_timestamps) {
.pull_down_en = GPIO_PULLDOWN_DISABLE,
};
ESP_ERROR_CHECK(gpio_config(&io_conf));
ESP_ERROR_CHECK(gpio_install_isr_service(0));
ESP_ERROR_CHECK(gpio_isr_handler_add(PPS_GPIO, pps_isr_handler, NULL));
xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL);
ESP_LOGI(TAG, "GPS sync initialized (RX=GPIO%d, PPS=GPIO%d)", GPS_RX_PIN, PPS_GPIO);
}
gps_timestamp_t gps_get_timestamp(void) {
gps_timestamp_t ts;
// Using clock_gettime (POSIX standard, portable)
// ESP32 supports CLOCK_MONOTONIC for monotonic time
clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts);
xSemaphoreTake(sync_mutex, portMAX_DELAY);
// Convert timespec to microseconds
ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL +
ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL +
ts.mono_ts.tv_nsec / 1000;
// Convert to milliseconds
ts.monotonic_ms = ts.monotonic_us / 1000;
// Calculate GPS time
ts.gps_us = ts.monotonic_us + monotonic_offset_us;
ts.gps_ms = ts.gps_us / 1000;
ts.synced = gps_has_fix;
xSemaphoreGive(sync_mutex);
return ts;
}
// Alternative: Get just milliseconds using clock_gettime
// Useful for simple logging where you only need millisecond resolution
int64_t gps_get_monotonic_ms(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
// Convert: seconds to ms + nanoseconds to ms
return (int64_t)ts.tv_sec * 1000LL + ts.tv_nsec / 1000000;
}
@ -223,88 +241,77 @@ bool gps_is_synced(void) {
return gps_has_fix;
}
// Custom log timestamp function - returns value formatted as seconds*1000000 + milliseconds*1000
// This allows us to extract both seconds and milliseconds when needed
// When printed directly, shows full milliseconds (we format it with decimal in custom logger)
uint32_t esp_log_timestamp(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
int64_t monotonic_us = (int64_t)ts.tv_sec * 1000000LL + ts.tv_nsec / 1000;
int64_t time_us;
if (!use_gps_for_logs || !gps_has_fix) {
time_us = monotonic_us;
} else {
time_us = monotonic_us + monotonic_offset_us;
}
// Convert to milliseconds and store parts
uint64_t time_ms = time_us / 1000;
last_timestamp_sec = time_ms / 1000;
last_timestamp_ms = time_ms % 1000;
// Return total milliseconds (ESP-IDF will print this)
// Our custom vprintf will reformat it
return (uint32_t)time_ms;
// ---------------- LOGGING SYSTEM INTERCEPTION ----------------
// We now only return standard system time (ms) to ESP-IDF.
// We do NOT return GPS time here because it overflows 32 bits.
uint32_t gps_log_timestamp(void) {
return (uint32_t)(esp_timer_get_time() / 1000ULL);
}
// Custom vprintf that reformats log timestamps to show decimal point and sync status
// Converts: I (1733424645234) TAG: message
// To: I (+1733424645.234) TAG: message (GPS synced)
// Or: I (*1.234) TAG: message (not synced - monotonic)
// Intercepts the log line string before it is printed.
// It detects the timestamp `(1234)` which is monotonic ms,
// and mathematically converts it to `(+17544234.123)` GPS sec.ms
int gps_log_vprintf(const char *fmt, va_list args) {
static char buffer[512];
// Format the message into our buffer
int ret = vsnprintf(buffer, sizeof(buffer), fmt, args);
assert(ret >= 0);
if (use_gps_for_logs) {
// Look for timestamp pattern: "I (", "W (", "E (", etc.
// Look for timestamp pattern: "I (", "W (", etc.
char *timestamp_start = NULL;
for (int i = 0; buffer[i] != '\0' && i < sizeof(buffer) - 20; i++) {
if ((buffer[i] == 'I' || buffer[i] == 'W' || buffer[i] == 'E' ||
buffer[i] == 'D' || buffer[i] == 'V') &&
if ((buffer[i] == 'I' || buffer[i] == 'W' || buffer[i] == 'E' ||
buffer[i] == 'D' || buffer[i] == 'V') &&
buffer[i+1] == ' ' && buffer[i+2] == '(') {
timestamp_start = &buffer[i+3];
break;
}
}
if (timestamp_start) {
// Find the closing parenthesis
char *timestamp_end = strchr(timestamp_start, ')');
if (timestamp_end) {
// Extract timestamp value
uint32_t timestamp_ms = 0;
if (sscanf(timestamp_start, "%lu", &timestamp_ms) == 1) {
uint32_t sec = timestamp_ms / 1000;
uint32_t ms = timestamp_ms % 1000;
// Choose prefix based on GPS sync status
char prefix = gps_has_fix ? '+' : '*';
// Rebuild the string with decimal point and prefix
// Parse the MONOTONIC ms that ESP-IDF put there
uint32_t monotonic_log_ms = 0;
if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) {
char reformatted[512];
size_t prefix_len = timestamp_start - buffer;
// Copy everything before timestamp
memcpy(reformatted, buffer, prefix_len);
// Add prefix, formatted timestamp with decimal
int decimal_len = snprintf(reformatted + prefix_len,
int decimal_len = 0;
if (gps_has_fix) {
// MATH: Calculate GPS time based on the log's monotonic time
int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000;
int64_t log_gps_us = log_mono_us + monotonic_offset_us;
// Split into Seconds and Milliseconds
uint64_t gps_sec = log_gps_us / 1000000;
uint32_t gps_ms = (log_gps_us % 1000000) / 1000;
decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len,
"%c%lu.%03u", prefix, sec, ms);
// Copy everything after timestamp
"+%" PRIu64 ".%03lu", gps_sec, gps_ms);
} else {
// No fix: just show monotonic nicely
uint32_t sec = monotonic_log_ms / 1000;
uint32_t ms = monotonic_log_ms % 1000;
decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len,
"*%lu.%03lu", sec, ms);
}
// Copy the rest of the message (from the closing parenthesis onwards)
strcpy(reformatted + prefix_len + decimal_len, timestamp_end);
// Print the reformatted string
return printf("%s", reformatted);
}
}
}
}
// If not reformatting or something went wrong, just print original
return printf("%s", buffer);
}

View File

@ -6,7 +6,7 @@
#include "freertos/semphr.h"
typedef struct {
int64_t monotonic_us; // Microseconds - never jumps backward
int64_t monotonic_us; // Microseconds - never jumps backward
int64_t monotonic_ms; // Milliseconds - for easier logging
int64_t gps_us; // GPS UTC time in microseconds
int64_t gps_ms; // GPS UTC time in milliseconds
@ -21,6 +21,11 @@ typedef struct {
// I (*1.234) TAG: message <-- * indicates not synced (monotonic)
void gps_sync_init(bool use_gps_log_timestamps);
// FORCE UPDATE: Ignore the low-pass filter for the next valid GPS fix.
// This snaps the time offset immediately to the new value.
// Useful on boot or if you detect a massive time discrepancy.
void gps_force_next_update(void);
// Get current timestamp (with both us and ms)
gps_timestamp_t gps_get_timestamp(void);
@ -31,5 +36,5 @@ int64_t gps_get_monotonic_ms(void);
bool gps_is_synced(void);
// Internal functions (called automatically by ESP-IDF - don't call directly)
uint32_t esp_log_timestamp(void);
uint32_t gps_log_timestamp(void);
int gps_log_vprintf(const char *fmt, va_list args);

View File

@ -4,6 +4,7 @@ idf_component_register(
INCLUDE_DIRS "."
PRIV_REQUIRES
csi_log
gps_sync
wifi_cfg
wifi_monitor
)

View File

@ -17,104 +17,86 @@
#include "led_strip.h"
// Custom Components
#include "iperf.h"
#include "wifi_cfg.h"
#include "csi_log.h"
#include "wifi_monitor.h"
#include "gps_sync.h" // <--- ADDED: GPS Support
static const char *TAG = "MAIN";
static const char *TAG = "main";
#if CONFIG_IDF_TARGET_ESP32S3
#define RGB_LED_GPIO 48
#elif CONFIG_IDF_TARGET_ESP32C5
// --- Hardware Configuration ---
#if CONFIG_IDF_TARGET_ESP32C5
#define RGB_LED_GPIO 27
#elif CONFIG_IDF_TARGET_ESP32C6
#define RGB_LED_GPIO 8
#elif CONFIG_IDF_TARGET_ESP32C3
#define RGB_LED_GPIO 8
#elif CONFIG_IDF_TARGET_ESP32S2
#define RGB_LED_GPIO 18
#elif CONFIG_IDF_TARGET_ESP32
#define RGB_LED_GPIO 2
#else
#error "Unsupported target - define RGB_LED_GPIO for your board"
// Fallback for other chips if you switch boards
#define RGB_LED_GPIO 8
#endif
// --- LED State Machine ---
static led_strip_handle_t led_strip;
static bool wifi_connected = false;
static bool has_config = false;
typedef enum {
LED_STATE_NO_CONFIG,
LED_STATE_WAITING,
LED_STATE_CONNECTED,
LED_STATE_FAILED,
LED_STATE_MONITORING
LED_STATE_NO_CONFIG, // Yellow Solid
LED_STATE_WAITING, // Blue Blink (Connecting)
LED_STATE_CONNECTED, // Green Solid (Connected to AP)
LED_STATE_FAILED, // Red Blink
LED_STATE_MONITORING // Blue Solid (Sniffing Air)
} led_state_t;
static led_state_t current_led_state = LED_STATE_NO_CONFIG;
static void rgb_led_init(void)
{
static void rgb_led_init(void) {
ESP_LOGI(TAG, "Initializing RGB LED on GPIO %d", RGB_LED_GPIO);
led_strip_config_t strip_config = {
.strip_gpio_num = RGB_LED_GPIO,
.max_leds = 1,
};
led_strip_rmt_config_t rmt_config = {
.resolution_hz = 10 * 1000 * 1000,
.flags.with_dma = false,
};
ESP_ERROR_CHECK(led_strip_new_rmt_device(&strip_config, &rmt_config, &led_strip));
led_strip_clear(led_strip);
ESP_LOGI(TAG, "WS2812 RGB LED initialized on GPIO %d", RGB_LED_GPIO);
}
static void set_led_color(uint8_t r, uint8_t g, uint8_t b)
{
static void set_led_color(uint8_t r, uint8_t g, uint8_t b) {
led_strip_set_pixel(led_strip, 0, r, g, b);
led_strip_refresh(led_strip);
}
static void led_task(void *arg)
{
static void led_task(void *arg) {
int blink_state = 0;
while(1) {
switch(current_led_state) {
case LED_STATE_NO_CONFIG:
set_led_color(255, 255, 0);
set_led_color(25, 25, 0); // Yellow (Dimmed)
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_WAITING:
if (blink_state) {
set_led_color(0, 0, 255);
} else {
set_led_color(0, 0, 0);
}
if (blink_state) set_led_color(0, 0, 50); // Blue
else set_led_color(0, 0, 0);
blink_state = !blink_state;
vTaskDelay(pdMS_TO_TICKS(1000));
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_STATE_CONNECTED:
set_led_color(0, 255, 0);
set_led_color(0, 25, 0); // Green
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_MONITORING:
set_led_color(0, 0, 255); // Solid BLUE
set_led_color(0, 0, 50); // Blue Solid
vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_FAILED:
if (blink_state) {
set_led_color(255, 0, 0);
} else {
set_led_color(0, 0, 0);
}
if (blink_state) set_led_color(50, 0, 0); // Red
else set_led_color(0, 0, 0);
blink_state = !blink_state;
vTaskDelay(pdMS_TO_TICKS(200));
break;
@ -122,429 +104,207 @@ static void led_task(void *arg)
}
}
// --- CSI support ---------------------------------------------------
// --- GPS Logging Helper ---
// Replaces the old plain text log with your CSV + GPS Timestamp format
void log_collapse_event(float nav_duration_us, int rssi, int retry) {
gps_timestamp_t ts = gps_get_timestamp();
// Format: COLLAPSE,MonoMS,GpsMS,Synced,Duration,RSSI,Retry
printf("COLLAPSE,%lld,%lld,%d,%.2f,%d,%d\n",
ts.monotonic_ms,
ts.gps_ms,
ts.synced ? 1 : 0,
nav_duration_us,
rssi,
retry);
}
// --- CSI Support ---------------------------------------------------
static bool s_csi_enabled = false;
static uint32_t s_csi_packet_count = 0;
static void csi_dump_task(void *arg) {
vTaskDelay(pdMS_TO_TICKS(20000));
csi_log_dump_over_uart();
vTaskDelete(NULL);
}
static void csi_cb(void *ctx, wifi_csi_info_t *info)
{
static void csi_cb(void *ctx, wifi_csi_info_t *info) {
csi_log_append_record(info);
s_csi_packet_count++;
if ((s_csi_packet_count % 100) == 0) {
ESP_LOGI("CSI", "Captured %lu CSI packets", (unsigned long)s_csi_packet_count);
}
}
static void wifi_enable_csi_once(void) {
if (s_csi_enabled) {
return;
}
esp_err_t err;
if (s_csi_enabled) return;
vTaskDelay(pdMS_TO_TICKS(2000));
wifi_csi_config_t csi_cfg;
#if CONFIG_IDF_TARGET_ESP32C5
memset(&csi_cfg, 0, sizeof(csi_cfg));
csi_cfg.enable = true;
#elif CONFIG_IDF_TARGET_ESP32S3
memset(&csi_cfg, 0, sizeof(csi_cfg));
csi_cfg.lltf_en = true;
csi_cfg.htltf_en = true;
csi_cfg.stbc_htltf2_en = false;
csi_cfg.ltf_merge_en = false;
csi_cfg.channel_filter_en = false;
csi_cfg.manu_scale = false;
csi_cfg.shift = 0;
#else
#warning "CSI not supported for this target"
return;
#endif
csi_cfg.enable = true; // C5 specific simple config
ESP_LOGI("CSI", "Configuring CSI...");
if (esp_wifi_set_csi_config(&csi_cfg) != ESP_OK) return;
if (esp_wifi_set_csi_rx_cb(csi_cb, NULL) != ESP_OK) return;
if (esp_wifi_set_csi(true) != ESP_OK) return;
err = esp_wifi_set_csi_config(&csi_cfg);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi_config failed: %s (0x%x)", esp_err_to_name(err), err);
return;
}
ESP_LOGI("CSI", "CSI config OK");
err = esp_wifi_set_csi_rx_cb(csi_cb, NULL);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi_rx_cb failed: %s", esp_err_to_name(err));
return;
}
ESP_LOGI("CSI", "CSI callback OK");
err = esp_wifi_set_csi(true);
if (err != ESP_OK) {
ESP_LOGE("CSI", "esp_wifi_set_csi(true) failed: %s", esp_err_to_name(err));
return;
}
ESP_LOGI("CSI", "CSI enabled!");
s_csi_enabled = true;
}
static void csi_dump_task(void *arg) {
vTaskDelay(pdMS_TO_TICKS(20000)); // Dump after 20 seconds
csi_log_dump_over_uart();
vTaskDelete(NULL);
}
static void csi_init_task(void *arg) {
wifi_enable_csi_once();
vTaskDelete(NULL);
}
// --- WiFi Monitor Mode support ---------------------------------------------------
// --- WiFi Monitor Mode Support -------------------------------------
static bool s_monitor_enabled = false;
static uint32_t s_monitor_frame_count = 0;
// This is the core analysis function
static void monitor_frame_callback(const wifi_frame_info_t *frame,
const uint8_t *payload,
uint16_t len) {
s_monitor_frame_count++;
// Log first 10 frames in detail
if (s_monitor_frame_count <= 10) {
const char *type_str = wifi_frame_type_str(frame->type, frame->subtype);
ESP_LOGI("MONITOR", "Frame #%lu: %s, NAV: %u us, RSSI: %d dBm, Retry: %d",
s_monitor_frame_count, type_str, frame->duration_id,
frame->rssi, frame->retry);
}
// Warn on collision indicators
// 1. Check for Collapse (High NAV + Retry)
if (frame->retry && frame->duration_id > 5000) {
ESP_LOGW("MONITOR", "⚠ COLLISION: Retry frame with high NAV (%u us)", frame->duration_id);
// USE GPS LOGGING HERE
log_collapse_event((float)frame->duration_id, frame->rssi, frame->retry);
}
// 2. Also warn on extremely high NAV (blocking the channel)
if (frame->duration_id > 30000) {
ESP_LOGW("MONITOR", "⚠ VERY HIGH NAV: %u us - possible collapse!", frame->duration_id);
ESP_LOGW("MONITOR", "⚠ VERY HIGH NAV: %u us", frame->duration_id);
}
}
static void monitor_stats_task(void *arg) {
while (1) {
vTaskDelay(pdMS_TO_TICKS(10000)); // Every 10 seconds
vTaskDelay(pdMS_TO_TICKS(10000)); // Every 10 seconds
wifi_collapse_stats_t stats;
if (wifi_monitor_get_stats(&stats) == ESP_OK) {
ESP_LOGI("MONITOR", "========================================");
ESP_LOGI("MONITOR", "WiFi Monitor Statistics:");
ESP_LOGI("MONITOR", " Total frames: %lu", stats.total_frames);
ESP_LOGI("MONITOR", " Retry frames: %lu (%.2f%%)",
stats.retry_frames, stats.retry_rate);
ESP_LOGI("MONITOR", " High NAV frames: %lu", stats.high_nav_frames);
ESP_LOGI("MONITOR", " Average NAV: %u us", stats.avg_nav);
ESP_LOGI("MONITOR", " Max NAV: %u us", stats.max_nav);
ESP_LOGI("MONITOR", " Collision events: %lu", stats.collision_events);
ESP_LOGI("MONITOR", "--- Stats: %lu frames, Retry Rate: %.2f%%, Avg NAV: %u us ---",
stats.total_frames, stats.retry_rate, stats.avg_nav);
// Check for collapse
if (wifi_monitor_is_collapsed()) {
ESP_LOGW("MONITOR", "⚠⚠⚠ WiFi COLLAPSE DETECTED! ⚠⚠⚠");
ESP_LOGW("MONITOR", " High retry rate: %.2f%%", stats.retry_rate);
ESP_LOGW("MONITOR", " High avg NAV: %u us", stats.avg_nav);
} else {
ESP_LOGI("MONITOR", "✓ WiFi operating normally");
}
ESP_LOGI("MONITOR", "========================================");
}
}
}
static void wifi_enable_monitor_mode(uint8_t channel) {
if (s_monitor_enabled) {
return;
}
if (s_monitor_enabled) return;
ESP_LOGI("MONITOR", "Starting WiFi monitor mode on channel %d", channel);
esp_err_t err = wifi_monitor_init(channel, monitor_frame_callback);
if (err != ESP_OK) {
ESP_LOGE("MONITOR", "WiFi monitor init failed: %s", esp_err_to_name(err));
return;
}
err = wifi_monitor_start();
if (err != ESP_OK) {
ESP_LOGE("MONITOR", "WiFi monitor start failed: %s", esp_err_to_name(err));
return;
}
if (wifi_monitor_init(channel, monitor_frame_callback) != ESP_OK) return;
if (wifi_monitor_start() != ESP_OK) return;
s_monitor_enabled = true;
current_led_state = LED_STATE_MONITORING;
ESP_LOGI("MONITOR", "WiFi monitor started - BLUE LED solid");
ESP_LOGI("MONITOR", "Capturing 802.11 frames for collapse detection");
// Start statistics task
ESP_LOGI("MONITOR", "WiFi monitor started");
xTaskCreate(monitor_stats_task, "monitor_stats", 4096, NULL, 5, NULL);
}
static void monitor_init_task(void *arg) {
// Get the channel from the connected AP
wifi_ap_record_t ap_info;
// Try to sniff the same channel our AP is using
if (esp_wifi_sta_get_ap_info(&ap_info) == ESP_OK) {
wifi_enable_monitor_mode(ap_info.primary);
} else {
// Default to channel 6 if we can't get AP info
wifi_enable_monitor_mode(6);
wifi_enable_monitor_mode(6); // Default fallback
}
vTaskDelete(NULL);
}
// --- Event Handler (Connection Logic) ------------------------------
static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
int32_t event_id, void* event_data) {
if (event_base == WIFI_EVENT) {
switch (event_id) {
case WIFI_EVENT_STA_START:
ESP_LOGI(TAG, "WiFi started, attempting connection...");
if (has_config) {
current_led_state = LED_STATE_WAITING;
}
break;
case WIFI_EVENT_STA_DISCONNECTED:
wifi_event_sta_disconnected_t* event = (wifi_event_sta_disconnected_t*) event_data;
// Get SSID for better error messages
wifi_config_t wifi_cfg;
const char *ssid = "unknown";
if (esp_wifi_get_config(WIFI_IF_STA, &wifi_cfg) == ESP_OK) {
ssid = (const char*)wifi_cfg.sta.ssid;
}
// Log disconnect with reason-specific messages
switch (event->reason) {
case 201: // WIFI_REASON_NO_AP_FOUND
ESP_LOGE(TAG, "WiFi disconnected (reason 201): NO AP FOUND");
ESP_LOGE(TAG, " SSID attempted: '%s'", ssid);
ESP_LOGE(TAG, " Verify AP is broadcasting and in range");
break;
case 202: // WIFI_REASON_AUTH_FAIL
ESP_LOGE(TAG, "WiFi disconnected (reason 202): AUTH FAILED");
ESP_LOGE(TAG, " SSID: '%s'", ssid);
ESP_LOGE(TAG, " Check password is correct");
break;
case 15: // WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT
ESP_LOGE(TAG, "WiFi disconnected (reason 15): 4-WAY HANDSHAKE TIMEOUT");
ESP_LOGE(TAG, " SSID: '%s'", ssid);
ESP_LOGE(TAG, " Password may be incorrect");
break;
case 2: // WIFI_REASON_AUTH_EXPIRE
ESP_LOGW(TAG, "WiFi disconnected (reason 2): AUTH EXPIRED");
ESP_LOGW(TAG, " SSID: '%s' - will retry", ssid);
break;
case 8: // WIFI_REASON_ASSOC_LEAVE
ESP_LOGW(TAG, "WiFi disconnected (reason 8): STATION LEFT");
ESP_LOGW(TAG, " SSID: '%s' - normal disconnect", ssid);
break;
default:
ESP_LOGW(TAG, "WiFi disconnected from '%s', reason: %d", ssid, event->reason);
break;
}
if (!wifi_connected && has_config) {
current_led_state = LED_STATE_FAILED;
ESP_LOGE(TAG, "WiFi connection FAILED - RED LED blinking");
}
break;
if (event_id == WIFI_EVENT_STA_START) {
if (has_config) current_led_state = LED_STATE_WAITING;
}
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
else if (event_id == WIFI_EVENT_STA_DISCONNECTED) {
wifi_event_sta_disconnected_t* event = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGW(TAG, "WiFi Disconnected (Reason: %d)", event->reason);
if (!wifi_connected && has_config) current_led_state = LED_STATE_FAILED;
}
}
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR " gw:" IPSTR " netmask:" IPSTR,
IP2STR(&event->ip_info.ip),
IP2STR(&event->ip_info.gw),
IP2STR(&event->ip_info.netmask));
ESP_LOGI(TAG, "Got IP: " IPSTR, IP2STR(&event->ip_info.ip));
wifi_connected = true;
current_led_state = LED_STATE_CONNECTED;
// Log connection details: SSID, band, channel, bandwidth, RSSI
wifi_config_t wifi_cfg;
wifi_ap_record_t ap_info;
if (esp_wifi_get_config(WIFI_IF_STA, &wifi_cfg) == ESP_OK &&
esp_wifi_sta_get_ap_info(&ap_info) == ESP_OK) {
// Determine band from channel
const char *band_str = "Unknown";
if (ap_info.primary >= 1 && ap_info.primary <= 14) {
band_str = "2.4GHz";
} else if (ap_info.primary >= 36) {
band_str = "5GHz";
}
// Get bandwidth - try dual-band API first, fallback to single-band
wifi_bandwidth_t bw = WIFI_BW_HT20; // Default to 20MHz
const char *bw_str = "Unknown";
bool bw_detected = false;
// Try esp_wifi_get_bandwidths() first (works on dual-band chips in auto mode)
wifi_bandwidths_t bandwidths = {0};
esp_err_t err = esp_wifi_get_bandwidths(WIFI_IF_STA, &bandwidths);
if (err == ESP_OK) {
// Dual-band API succeeded - select bandwidth based on current band
if (ap_info.primary >= 1 && ap_info.primary <= 14) {
// 2.4GHz band
bw = (wifi_bandwidth_t)bandwidths.ghz_2g;
bw_detected = true;
} else if (ap_info.primary >= 36) {
// 5GHz band
bw = (wifi_bandwidth_t)bandwidths.ghz_5g;
bw_detected = true;
}
} else {
// Dual-band API failed - try single-band API (ESP32-S3, older IDF)
err = esp_wifi_get_bandwidth(WIFI_IF_STA, &bw);
if (err == ESP_OK) {
bw_detected = true;
}
}
// Convert bandwidth enum to string
if (bw_detected) {
switch (bw) {
case WIFI_BW_HT20:
bw_str = "20MHz (HT20)";
break;
case WIFI_BW_HT40:
bw_str = "40MHz (HT40)";
break;
case WIFI_BW80:
bw_str = "80MHz (VHT80)";
break;
default:
bw_str = "Unknown";
break;
}
}
ESP_LOGI(TAG, "========================================");
ESP_LOGI(TAG, "WiFi CONNECTED - BLUE LED solid");
ESP_LOGI(TAG, " SSID: '%s'", wifi_cfg.sta.ssid);
ESP_LOGI(TAG, " Band: %s", band_str);
// Get configured bandwidth from NVS
char configured_bw[16] = {0};
wifi_cfg_get_bandwidth(configured_bw, sizeof(configured_bw));
// Show both configured and requested bandwidth, look for wifi_connect in logs to get negotiated
if (bw_detected) {
ESP_LOGI(TAG, " Bandwidth: %s (requested) - NVS configured: %s", bw_str, configured_bw);
// Warn if mismatch
bool mismatch = false;
if (strcmp(configured_bw, "VHT80") == 0 && bw != WIFI_BW80) {
mismatch = true;
} else if (strcmp(configured_bw, "HT40") == 0 && bw != WIFI_BW_HT40) {
mismatch = true;
} else if (strcmp(configured_bw, "HT20") == 0 && bw != WIFI_BW_HT20) {
mismatch = true;
}
if (mismatch) {
ESP_LOGW(TAG, " ⚠ Bandwidth mismatch! Configured %s but negotiated %s", configured_bw, bw_str);
ESP_LOGW(TAG, " Check: router channel width setting, channel selection, RF interference");
}
} else {
ESP_LOGI(TAG, " Bandwidth: Unknown (configured: %s)", configured_bw);
}
ESP_LOGI(TAG, " Channel: %d", ap_info.primary);
ESP_LOGI(TAG, " RSSI: %d dBm", ap_info.rssi);
// Get and display power save mode
wifi_ps_type_t ps_mode = wifi_cfg_get_power_save_mode();
const char *ps_str = "Unknown";
switch (ps_mode) {
case WIFI_PS_NONE:
ps_str = "None (best for CSI)";
break;
case WIFI_PS_MIN_MODEM:
ps_str = "Minimum Modem";
break;
case WIFI_PS_MAX_MODEM:
ps_str = "Maximum Modem";
break;
default:
ps_str = "Unknown";
break;
}
ESP_LOGI(TAG, " PowerSave: %s", ps_str);
ESP_LOGI(TAG, " BSSID: %02x:%02x:%02x:%02x:%02x:%02x",
ap_info.bssid[0], ap_info.bssid[1], ap_info.bssid[2],
ap_info.bssid[3], ap_info.bssid[4], ap_info.bssid[5]);
ESP_LOGI(TAG, "========================================");
} else {
ESP_LOGI(TAG, "WiFi CONNECTED - BLUE LED solid");
}
// Try CSI first (might fail on ESP32-C5)
// Sequence: 1. Start CSI, 2. Start Monitor, 3. Start Iperf
xTaskCreate(csi_init_task, "csi_init", 4096, NULL, 5, NULL);
// Start WiFi monitor mode (works reliably)
vTaskDelay(pdMS_TO_TICKS(2000));
xTaskCreate(monitor_init_task, "monitor_init", 4096, NULL, 5, NULL);
vTaskDelay(pdMS_TO_TICKS(1000));
iperf_cfg_t cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.flag = IPERF_FLAG_SERVER | IPERF_FLAG_TCP;
cfg.sport = 5001;
iperf_start(&cfg);
ESP_LOGI(TAG, "iperf TCP server started on port 5001");
// Optional: Dump CSI data later
xTaskCreate(csi_dump_task, "csi_dump_task", 4096, NULL, 5, NULL);
}
}
// --- Main Application Entry ----------------------------------------
void app_main(void) {
// 1. Initialize Non-Volatile Storage (needed for WiFi config)
ESP_ERROR_CHECK(nvs_flash_init());
// 2. Initialize Netif (TCP/IP stack)
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
// 3. Initialize Custom Logging & LED
ESP_ERROR_CHECK(csi_log_init());
rgb_led_init();
xTaskCreate(led_task, "led_task", 4096, NULL, 5, NULL);
// 4. Initialize GPS (The new addition!)
// We do this EARLY so timestamps are ready when WiFi events happen
ESP_LOGI(TAG, "Starting GPS Sync...");
gps_sync_init(true); // true = Use GPS for system log timestamps
// 5. Register WiFi Events
ESP_ERROR_CHECK(esp_event_handler_instance_register(
WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL, NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(
IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL, NULL));
// 6. Initialize WiFi Configuration
wifi_cfg_init();
if (wifi_cfg_apply_from_nvs()) {
has_config = true;
current_led_state = LED_STATE_WAITING;
ESP_LOGI(TAG, "WiFi config loaded from NVS");
ESP_LOGI(TAG, "WiFi config loaded. Connecting...");
} else {
has_config = false;
current_led_state = LED_STATE_NO_CONFIG;
ESP_LOGI(TAG, "No WiFi config - YELLOW LED");
ESP_LOGI(TAG, "No WiFi config found. Yellow LED.");
ESP_LOGI(TAG, "Use CLI 'wifi_config_set <ssid> <pass>' to configure.");
}
ESP_LOGI(TAG, "LED Status:");
ESP_LOGI(TAG, " YELLOW solid = NO CONFIG (send CFG/END)");
ESP_LOGI(TAG, " BLUE slow blink = Connecting");
ESP_LOGI(TAG, " GREEN solid = Connected ✓");
ESP_LOGI(TAG, " BLUE solid = Monitor Mode (capturing 802.11 frames)");
ESP_LOGI(TAG, " RED fast blink = Failed ✗");
// 7. Loop forever (Logic is handled by tasks and events)
while(1) {
vTaskDelay(pdMS_TO_TICKS(1000));
// Optional: Print GPS status occasionally
if (!gps_is_synced()) {
// ESP_LOGI(TAG, "Waiting for GPS lock...");
}
}
}