iperf 2 control support

This commit is contained in:
Bob 2025-12-13 18:52:59 -08:00
parent f9bcb0f7c4
commit cab824265d
7 changed files with 260 additions and 470 deletions

View File

@ -1,4 +1,4 @@
idf_component_register(SRCS "app_console.c"
INCLUDE_DIRS "."
REQUIRES console
PRIV_REQUIRES wifi_controller csi_manager status_led gps_sync esp_wifi)
PRIV_REQUIRES wifi_controller csi_manager status_led gps_sync esp_wifi iperf)

View File

@ -10,27 +10,59 @@
#include "wifi_controller.h"
#include "status_led.h"
#include "gps_sync.h"
#include "iperf.h"
// 1. GUARDED INCLUDE
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_manager.h"
#endif
// --- Command Handlers ---
static int cmd_mode_monitor(int argc, char **argv) {
// Default to current channel if not provided
int channel = wifi_ctl_get_monitor_channel();
if (argc > 1) {
channel = atoi(argv[1]);
if (channel < 1 || channel > 165) {
printf("Error: Invalid channel %d\n", channel);
static int cmd_iperf(int argc, char **argv) {
if (argc < 2) {
printf("Usage: iperf <start|stop|pps|status>\n");
return 1;
}
if (strcmp(argv[1], "start") == 0) {
iperf_cfg_t cfg = { .time = 0 }; // Infinite
iperf_start(&cfg);
printf("IPERF_STARTED\n");
return 0;
} else if (strcmp(argv[1], "stop") == 0) {
iperf_stop();
printf("IPERF_STOPPED\n");
return 0;
} else if (strcmp(argv[1], "pps") == 0) {
// Syntax: iperf pps 100
if (argc < 3) {
printf("Error: Missing value. Usage: iperf pps <rate>\n");
return 1;
}
int pps = atoi(argv[2]);
if (pps <= 0) {
printf("Error: Invalid PPS.\n");
return 1;
}
iperf_set_pps((uint32_t)pps);
printf("IPERF_PPS_UPDATED: %d\n", pps);
return 0;
} else if (strcmp(argv[1], "status") == 0) {
uint32_t pps = iperf_get_pps();
printf("IPERF_STATUS: PPS=%lu\n", (unsigned long)pps);
return 0;
}
// Default bandwidth HT20 for monitor mode
printf("Error: Unknown subcommand '%s'.\n", argv[1]);
return 1;
}
static int cmd_mode_monitor(int argc, char **argv) {
int channel = wifi_ctl_get_monitor_channel();
if (argc > 1) channel = atoi(argv[1]);
if (wifi_ctl_switch_to_monitor(channel, WIFI_BW_HT20) != ESP_OK) {
printf("Failed to switch to monitor mode\n");
return 1;
@ -39,79 +71,38 @@ static int cmd_mode_monitor(int argc, char **argv) {
}
static int cmd_mode_sta(int argc, char **argv) {
// Simple switch to STA, auto band
if (wifi_ctl_switch_to_sta(WIFI_BAND_MODE_AUTO) != ESP_OK) {
printf("Failed to switch to STA mode\n");
return 1;
}
printf("Switching to STA mode...\n");
return 0;
}
static int cmd_mode_status(int argc, char **argv) {
wifi_ctl_mode_t mode = wifi_ctl_get_mode();
printf("\n=== WiFi Mode Status ===\n");
printf("Current mode: %s\n", mode == WIFI_CTL_MODE_STA ? "STA" : "MONITOR");
printf("LED state: %d\n", status_led_get_state());
printf("GPS synced: %s\n", gps_is_synced() ? "Yes" : "No");
if (mode == WIFI_CTL_MODE_STA) {
// 2. GUARDED STATUS PRINT
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED
printf("CSI Enabled: %s\n", csi_mgr_is_enabled() ? "Yes" : "No");
printf("CSI Packets: %lu\n", (unsigned long)csi_mgr_get_packet_count());
#else
printf("CSI Support: Disabled in build\n");
#endif
} else {
printf("Monitor Ch: %d\n", wifi_ctl_get_monitor_channel());
printf("Captured: %lu frames\n", (unsigned long)wifi_ctl_get_monitor_frame_count());
}
return 0;
}
static int cmd_csi_dump(int argc, char **argv) {
if (wifi_ctl_get_mode() != WIFI_CTL_MODE_STA) {
printf("Error: CSI only available in STA mode\n");
return 1;
}
// 3. GUARDED DUMP ACTION
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED
printf("Scheduling CSI dump...\n");
csi_mgr_schedule_dump();
#else
printf("Error: CSI feature is disabled in this firmware build.\n");
#endif
return 0;
}
// --- Registration ---
void app_console_register_commands(void) {
const esp_console_cmd_t cmds[] = {
{
.command = "mode_monitor",
.help = "Switch to monitor mode (Usage: mode_monitor [channel])",
.func = &cmd_mode_monitor
},
{
.command = "mode_sta",
.help = "Switch to STA mode",
.func = &cmd_mode_sta
},
{
.command = "mode_status",
.help = "Show device status",
.func = &cmd_mode_status
},
{
.command = "csi_dump",
.help = "Dump collected CSI data to UART",
.func = &cmd_csi_dump
},
{ .command = "mode_monitor", .help = "Switch to monitor mode", .func = &cmd_mode_monitor },
{ .command = "mode_sta", .help = "Switch to STA mode", .func = &cmd_mode_sta },
{ .command = "mode_status", .help = "Show device status", .func = &cmd_mode_status },
{ .command = "csi_dump", .help = "Dump collected CSI data", .func = &cmd_csi_dump },
{ .command = "iperf", .help = "Control iperf (start, stop, pps, status)", .func = &cmd_iperf },
};
for (int i = 0; i < sizeof(cmds)/sizeof(cmds[0]); i++) {

View File

@ -26,13 +26,16 @@ static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1)
// Check rate every 500ms
#define RATE_CHECK_INTERVAL_US 500000
// Minimum gap (Safety Limit)
#define MIN_PACING_INTERVAL_US 100
typedef struct {
iperf_cfg_t cfg;
bool finish;
uint32_t total_len;
uint32_t buffer_len;
uint8_t *buffer;
uint32_t sockfd;
} iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0};
@ -42,16 +45,12 @@ static esp_event_handler_instance_t instance_got_ip;
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
// Do nothing, wait for IP
}
else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
status_led_set_state(LED_STATE_FAILED); // Red Blink on disconnect
status_led_set_state(LED_STATE_NO_CONFIG); // Yellow
}
}
@ -67,12 +66,10 @@ static bool iperf_wait_for_ip(void) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
}
ESP_LOGI(TAG, "Waiting for IP address...");
EventBits_t bits = xEventGroupWaitBits(s_iperf_event_group, IPERF_IP_READY_BIT | IPERF_STOP_REQ_BIT, pdFALSE, pdFALSE, portMAX_DELAY);
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
if (bits & IPERF_STOP_REQ_BIT) return false;
return true;
return !(bits & IPERF_STOP_REQ_BIT);
}
static void trim_whitespace(char *str) {
@ -83,216 +80,155 @@ static void trim_whitespace(char *str) {
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
esp_err_t err = nvs_open("storage", NVS_READONLY, &my_handle);
uint32_t val = 0;
size_t required_size;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
// --- DEFAULTS ---
// Change: 5ms Gap to test Media Access Contention
cfg->pacing_period_us = 5000;
cfg->burst_count = 1;
cfg->send_len = IPERF_UDP_TX_LEN;
cfg->dport = 5001;
cfg->dip = inet_addr("192.168.1.50"); // Default Target if NVS missing
if (cfg->time == 0) cfg->time = UINT32_MAX;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
if (err != ESP_OK) return;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK && val > 0) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK && val > 0) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK && val > 0) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK && val > 0) {
cfg->dport = (uint16_t)val;
}
// --- RESTORED NVS IP LOGIC (NO OVERRIDE) ---
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &required_size) == ESP_OK) {
char *ip_str = malloc(required_size);
size_t req;
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &required_size);
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
// FIX: Use whatever is in NVS, do not auto-correct
cfg->dip = inet_addr(ip_str);
ESP_LOGI(TAG, "NVS Target IP: %s", ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
// ... (Unused functions omitted) ...
static void __attribute__((unused)) socket_send(int sockfd, const uint8_t *buffer, int len) {}
static int __attribute__((unused)) socket_recv(int sockfd, uint8_t *buffer, int len, TickType_t timeout_ticks) { return 0; }
static esp_err_t iperf_start_tcp_server(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "TCP Server not implemented"); return ESP_FAIL; }
static esp_err_t iperf_start_tcp_client(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "TCP Client not implemented"); return ESP_FAIL; }
static esp_err_t iperf_start_udp_server(iperf_ctrl_t *ctrl) { ESP_LOGW(TAG, "UDP Server not implemented"); return ESP_FAIL; }
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl)
{
if (period_us < MIN_PACING_INTERVAL_US) {
period_us = MIN_PACING_INTERVAL_US;
ESP_LOGW(TAG, "PPS %" PRIu32 " clamped to max safe rate", pps);
}
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
ESP_LOGI(TAG, "Runtime pacing updated to %" PRIu32 " PPS", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) return ESP_FAIL;
struct sockaddr_in addr;
int sockfd;
struct timespec ts;
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
ESP_LOGE(TAG, "Unable to create socket: errno %d", errno);
status_led_set_state(LED_STATE_FAILED);
return ESP_FAIL;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001);
addr.sin_addr.s_addr = ctrl->cfg.dip;
char ip_str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &addr.sin_addr, ip_str, INET_ADDRSTRLEN);
ESP_LOGI(TAG, "Target: %s:%d", ip_str, ntohs(addr.sin_port));
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
status_led_set_state(LED_STATE_FAILED);
return ESP_FAIL;
}
uint32_t burst_count = ctrl->cfg.burst_count;
uint32_t payload_len = ctrl->cfg.send_len;
uint32_t pacing_period_us = ctrl->cfg.pacing_period_us;
status_led_set_state(LED_STATE_TRANSMITTING_SLOW); // Default state
double total_mbps = (double)((uint64_t)burst_count * payload_len * 8 * (1000000.0 / pacing_period_us)) / 1000000.0;
ESP_LOGI(TAG, "Pacing: %" PRIu32 " pkts every %" PRIu32 " us (Approx %.2f Mbps)", burst_count, pacing_period_us, total_mbps);
int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
client_hdr_v1 *client_hdr = (client_hdr_v1 *)(ctrl->buffer + sizeof(udp_datagram));
client_hdr->flags = htonl(HEADER_VERSION1);
client_hdr->numThreads = htonl(1);
client_hdr->mPort = htonl(ntohs(addr.sin_port));
client_hdr->mBufLen = htonl(payload_len);
client_hdr->mWinBand = htonl(0);
client_hdr->mAmount = htonl(-(int)(10000));
status_led_set_state(LED_STATE_TRANSMITTING);
uint64_t total_len = 0;
uint32_t packet_count = 0;
int64_t start_time_us = esp_timer_get_time();
int64_t next_send_time = start_time_us;
int64_t end_time_us = (ctrl->cfg.time == UINT32_MAX) ? INT64_MAX : start_time_us + (int64_t)ctrl->cfg.time * 1000000LL;
// Error Tracking
int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0;
int64_t enomem_start_time = 0;
const int64_t ENOMEM_TIMEOUT_US = 10 * 1000 * 1000; // 10 Seconds
while (!ctrl->finish && esp_timer_get_time() < end_time_us) {
while (!ctrl->finish && esp_timer_get_time() < end_time) {
int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now;
int64_t current_time = esp_timer_get_time();
int64_t time_to_wait = next_send_time - current_time;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000));
else while (esp_timer_get_time() < next_send_time) taskYIELD();
if (time_to_wait > 0) {
if (time_to_wait > 2000) {
vTaskDelay(pdMS_TO_TICKS(time_to_wait / 1000));
} else {
while (esp_timer_get_time() < next_send_time) {
taskYIELD();
}
}
}
for (int k = 0; k < burst_count; k++) {
udp_datagram *header = (udp_datagram *)ctrl->buffer;
clock_gettime(CLOCK_MONOTONIC, &ts);
header->id = htonl(packet_count);
header->tv_sec = htonl(ts.tv_sec);
header->tv_usec = htonl(ts.tv_nsec / 1000);
header->id2 = 0;
int send_len = sendto(sockfd, ctrl->buffer, payload_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (send_len > 0) {
total_len += send_len;
packet_count++;
for (int k = 0; k < ctrl->cfg.burst_count; k++) {
int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (sent > 0) {
packets_since_check++;
enomem_start_time = 0;
if (status_led_get_state() != LED_STATE_TRANSMITTING) {
status_led_set_state(LED_STATE_TRANSMITTING);
// --- DYNAMIC RATE HEALTH CHECK ---
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
int64_t interval = now - last_rate_check;
double cycles = (double)interval / (double)ctrl->cfg.pacing_period_us;
uint32_t expected_pkts = (uint32_t)(cycles * ctrl->cfg.burst_count);
// Threshold: 75% of expected rate
uint32_t threshold = (expected_pkts * 3) / 4;
led_state_t target = (packets_since_check >= threshold)
? LED_STATE_TRANSMITTING // Busy (Fast Flash)
: LED_STATE_TRANSMITTING_SLOW; // Slow (Slow Pulse)
if (status_led_get_state() != target) status_led_set_state(target);
last_rate_check = now;
packets_since_check = 0;
}
} else {
// --- ERROR HANDLING ---
if (errno == 12) { // ENOMEM
int64_t now = esp_timer_get_time();
if (status_led_get_state() != LED_STATE_STALLED) status_led_set_state(LED_STATE_STALLED);
if (status_led_get_state() != LED_STATE_STALLED) {
status_led_set_state(LED_STATE_STALLED);
if (enomem_start_time == 0) enomem_start_time = now;
else if (now - enomem_start_time > 10000000) {
status_led_set_state(LED_STATE_FAILED); goto exit;
}
if (enomem_start_time == 0) {
enomem_start_time = now;
} else if ((now - enomem_start_time) > ENOMEM_TIMEOUT_US) {
ESP_LOGE(TAG, "UDP send ENOMEM persistent for 10s. STOPPING.");
status_led_set_state(LED_STATE_FAILED);
goto exit_client;
}
vTaskDelay(pdMS_TO_TICKS(10));
continue;
} else {
ESP_LOGE(TAG, "UDP send failed: %d. STOPPING.", errno);
status_led_set_state(LED_STATE_FAILED);
goto exit_client;
status_led_set_state(LED_STATE_FAILED); goto exit;
}
}
}
next_send_time += pacing_period_us;
if (esp_timer_get_time() > next_send_time + 4000) next_send_time = esp_timer_get_time() + pacing_period_us;
next_send_time += ctrl->cfg.pacing_period_us;
}
exit_client:
exit:
if (status_led_get_state() != LED_STATE_FAILED) {
status_led_set_state(LED_STATE_CONNECTED);
EventBits_t bits = xEventGroupGetBits(s_iperf_event_group);
status_led_set_state((bits & IPERF_IP_READY_BIT) ? LED_STATE_CONNECTED : LED_STATE_NO_CONFIG);
}
close(sockfd);
return ESP_OK;
}
static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
iperf_start_udp_client(ctrl);
if (ctrl->buffer) { free(ctrl->buffer); ctrl->buffer = NULL; }
if (s_iperf_event_group) { vEventGroupDelete(s_iperf_event_group); s_iperf_event_group = NULL; }
s_iperf_task_handle = NULL;
iperf_start_udp_client((iperf_ctrl_t *)arg);
free(((iperf_ctrl_t *)arg)->buffer);
vTaskDelete(NULL);
}
void iperf_start(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
uint8_t enabled = 1;
if (nvs_open("storage", NVS_READONLY, &my_handle) == ESP_OK) {
nvs_get_u8(my_handle, NVS_KEY_IPERF_ENABLE, &enabled);
nvs_close(my_handle);
}
if (enabled == 0) return;
if (s_iperf_task_handle != NULL) return;
memcpy(&s_iperf_ctrl.cfg, cfg, sizeof(iperf_cfg_t));
s_iperf_ctrl.cfg.flag = IPERF_FLAG_CLIENT | IPERF_FLAG_UDP;
if (s_iperf_task_handle) return;
s_iperf_ctrl.cfg = *cfg;
if (s_iperf_ctrl.cfg.send_len == 0) s_iperf_ctrl.cfg.send_len = 1470;
if (s_iperf_ctrl.cfg.pacing_period_us == 0) s_iperf_ctrl.cfg.pacing_period_us = 10000;
if (s_iperf_ctrl.cfg.burst_count == 0) s_iperf_ctrl.cfg.burst_count = 1;
iperf_read_nvs_config(&s_iperf_ctrl.cfg);
s_iperf_ctrl.finish = false;
uint32_t alloc_len = s_iperf_ctrl.cfg.send_len > 0 ? s_iperf_ctrl.cfg.send_len : IPERF_UDP_TX_LEN;
uint32_t min_hdr = sizeof(udp_datagram) + sizeof(client_hdr_v1);
if (alloc_len < min_hdr) alloc_len = min_hdr;
s_iperf_ctrl.buffer_len = alloc_len;
s_iperf_ctrl.buffer = malloc(s_iperf_ctrl.buffer_len);
memset(s_iperf_ctrl.buffer, 0, s_iperf_ctrl.buffer_len);
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
s_iperf_event_group = xEventGroupCreate();
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, IPERF_TRAFFIC_TASK_PRIORITY, &s_iperf_task_handle);
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
}
void iperf_stop(void) {
if (s_iperf_task_handle != NULL) {
if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
}

View File

@ -91,6 +91,18 @@ typedef struct {
*/
void iperf_init_led(led_strip_handle_t handle);
/**
* @brief Set the target pacing rate in Packets Per Second (PPS).
* Converts PPS to microsecond interval internally.
* @param pps Target rate (e.g., 100 = 100 packets/sec)
*/
void iperf_set_pps(uint32_t pps);
/**
* @brief Get the current target rate in PPS.
*/
uint32_t iperf_get_pps(void);
void iperf_start(iperf_cfg_t *cfg);
void iperf_stop(void);

View File

@ -5,79 +5,51 @@
#include "led_strip.h"
#include "esp_log.h"
static const char *TAG = "STATUS_LED";
static led_strip_handle_t s_led_strip = NULL;
static bool s_is_rgb = false;
static int s_gpio_pin = -1;
static volatile led_state_t s_current_state = LED_STATE_NO_CONFIG;
// Internal helper to abstract hardware differences
static void set_color(uint8_t r, uint8_t g, uint8_t b) {
if (s_is_rgb && s_led_strip) {
// Addressable RGB (WS2812)
led_strip_set_pixel(s_led_strip, 0, r, g, b);
led_strip_refresh(s_led_strip);
} else if (!s_is_rgb && s_gpio_pin >= 0) {
// Simple LED: Any color > 0 is treated as ON
bool on = (r + g + b) > 0;
gpio_set_level(s_gpio_pin, on ? 1 : 0);
gpio_set_level(s_gpio_pin, (r+g+b) > 0);
}
}
static void led_task(void *arg) {
int blink_toggle = 0;
int toggle = 0;
while (1) {
switch (s_current_state) {
case LED_STATE_NO_CONFIG:
if (s_is_rgb) {
set_color(25, 25, 0); // Yellow
vTaskDelay(pdMS_TO_TICKS(1000));
} else {
set_color(255, 255, 255); vTaskDelay(pdMS_TO_TICKS(100));
set_color(0, 0, 0); vTaskDelay(pdMS_TO_TICKS(100));
}
case LED_STATE_NO_CONFIG: // Yellow
if (s_is_rgb) { set_color(25, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000)); }
else { set_color(1,1,1); vTaskDelay(100); set_color(0,0,0); vTaskDelay(100); }
break;
case LED_STATE_WAITING:
// Blue Blink (Slow)
if (blink_toggle) set_color(0, 0, 50);
else set_color(0, 0, 0);
blink_toggle = !blink_toggle;
case LED_STATE_WAITING: // Blue Blink
set_color(0, 0, toggle ? 50 : 0); toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(500));
break;
case LED_STATE_CONNECTED:
// Green Solid
set_color(0, 25, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
case LED_STATE_CONNECTED: // Green Solid
set_color(0, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_MONITORING:
// Blue Solid
set_color(0, 0, 50);
vTaskDelay(pdMS_TO_TICKS(1000));
case LED_STATE_MONITORING: // Blue Solid
set_color(0, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_TRANSMITTING:
// Behavior: Purple Flash (Fast) - "Sending"
if (blink_toggle) set_color(50, 0, 50); // Purple
else set_color(0, 0, 0); // Off
blink_toggle = !blink_toggle;
vTaskDelay(pdMS_TO_TICKS(100)); // Fast toggle
case LED_STATE_TRANSMITTING: // Fast Purple (Busy)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(50));
break;
case LED_STATE_STALLED:
// Behavior: Purple Solid - "Buffered/Error 12"
set_color(50, 0, 50);
vTaskDelay(pdMS_TO_TICKS(1000));
case LED_STATE_TRANSMITTING_SLOW: // Slow Purple (Relaxed)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(250));
break;
case LED_STATE_FAILED:
// Red Blink (Fast)
if (blink_toggle) set_color(50, 0, 0);
else set_color(0, 0, 0);
blink_toggle = !blink_toggle;
case LED_STATE_STALLED: // Purple Solid
set_color(50, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000));
break;
case LED_STATE_FAILED: // Red Blink
set_color(toggle ? 50 : 0, 0, 0); toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(200));
break;
}
@ -87,27 +59,15 @@ static void led_task(void *arg) {
void status_led_init(int gpio_pin, bool is_rgb_strip) {
s_gpio_pin = gpio_pin;
s_is_rgb = is_rgb_strip;
ESP_LOGI(TAG, "Initializing LED on GPIO %d (Type: %s)",
gpio_pin, is_rgb_strip ? "RGB Strip" : "Simple GPIO");
if (s_is_rgb) {
led_strip_config_t strip_config = {
.strip_gpio_num = gpio_pin,
.max_leds = 1,
};
led_strip_rmt_config_t rmt_config = {
.resolution_hz = 10 * 1000 * 1000,
.flags.with_dma = false,
};
ESP_ERROR_CHECK(led_strip_new_rmt_device(&strip_config, &rmt_config, &s_led_strip));
led_strip_config_t s_cfg = { .strip_gpio_num = gpio_pin, .max_leds = 1 };
led_strip_rmt_config_t r_cfg = { .resolution_hz = 10 * 1000 * 1000 };
led_strip_new_rmt_device(&s_cfg, &r_cfg, &s_led_strip);
led_strip_clear(s_led_strip);
} else {
gpio_reset_pin(gpio_pin);
gpio_set_direction(gpio_pin, GPIO_MODE_OUTPUT);
gpio_set_level(gpio_pin, 0);
}
xTaskCreate(led_task, "led_task", 2048, NULL, 5, NULL);
}

View File

@ -12,15 +12,16 @@ typedef enum {
LED_STATE_WAITING,
LED_STATE_CONNECTED,
LED_STATE_MONITORING,
LED_STATE_TRANSMITTING, // Flashing Purple (Active)
LED_STATE_STALLED, // Solid Purple (Non-Fatal Error/Buffering)
LED_STATE_TRANSMITTING, // Busy / Fast Flash (Healthy)
LED_STATE_TRANSMITTING_SLOW, // Slow Pulse (Falling behind)
LED_STATE_STALLED, // Solid Purple (Blocked)
LED_STATE_FAILED
} led_state_t;
/**
* @brief Initialize the status LED driver
* Supports both Addressable RGB (WS2812) and Simple GPIO LEDs.
* * @param gpio_pin The GPIO pin number
* @param gpio_pin The GPIO pin number
* @param is_rgb_strip Set true for NeoPixel/WS2812, false for simple ON/OFF LED
*/
void status_led_init(int gpio_pin, bool is_rgb_strip);

View File

@ -1,4 +1,3 @@
#!/usr/bin/env python3
import asyncio
import argparse
@ -7,89 +6,68 @@ import sys
import re
class SerialController(asyncio.Protocol):
def __init__(self, port_name, command, loop, completion_future):
def __init__(self, port_name, args, loop, completion_future):
self.port_name = port_name
self.command = command
self.args = args
self.loop = loop
self.transport = None
self.response_buffer = ""
self.buffer = ""
self.completion_future = completion_future
self.target_keyword = "IPERF_STARTED" if "start" in command else "IPERF_STOPPED"
# Determine command string
if args.action == 'pps':
self.cmd_str = f"iperf pps {args.value}\n"
self.target_key = "IPERF_PPS_UPDATED"
elif args.action == 'status':
self.cmd_str = "iperf status\n"
self.target_key = "IPERF_STATUS"
else:
self.cmd_str = f"iperf {args.action}\n"
self.target_key = f"IPERF_{args.action.upper()}ED" # STARTED / STOPPED
def connection_made(self, transport):
self.transport = transport
# 1. Clear line noise
transport.write(b'\n')
# 2. Schedule command
transport.write(b'\n') # Clear noise
self.loop.create_task(self.send_command())
async def send_command(self):
await asyncio.sleep(0.1)
# SPACE separated subcommand: "iperf start" or "iperf stop"
full_cmd = f"iperf {self.command}\n"
self.transport.write(full_cmd.encode())
self.transport.write(self.cmd_str.encode())
def data_received(self, data):
text = data.decode(errors='ignore')
self.response_buffer += text
self.buffer += data.decode(errors='ignore')
# Check for confirmation keyword
if self.target_keyword in self.response_buffer:
if self.target_key in self.buffer:
if not self.completion_future.done():
if self.args.action == 'status':
m = re.search(r'PPS=(\d+)', self.buffer)
val = m.group(1) if m else "Unknown"
self.completion_future.set_result(val)
else:
self.completion_future.set_result(True)
self.transport.close()
def connection_lost(self, exc):
if not self.completion_future.done():
# If we closed it intentionally (set_result called), this is fine.
# If it closed unexpectedly, set exception.
self.completion_future.set_exception(exc if exc else Exception("Connection closed without confirmation"))
self.completion_future.set_exception(Exception("Closed"))
async def run_single_device(port, action):
async def run_device(port, args):
loop = asyncio.get_running_loop()
completion_future = loop.create_future()
transport = None
fut = loop.create_future()
try:
transport, protocol = await serial_asyncio.create_serial_connection(
loop,
lambda: SerialController(port, action, loop, completion_future),
port,
baudrate=115200
)
# Wait for success or timeout
await asyncio.wait_for(completion_future, timeout=5.0)
print(f"[{port}] {action.upper()} SUCCESS")
return True
except asyncio.TimeoutError:
print(f"[{port}] TIMEOUT (No confirmation received)")
return False
except Exception as e:
print(f"[{port}] FAILED: {e}")
return False
finally:
if transport and not transport.is_closing():
transport.close()
await serial_asyncio.create_serial_connection(
loop, lambda: SerialController(port, args, loop, fut), port, baudrate=115200)
return await asyncio.wait_for(fut, timeout=2.0)
except:
return None
def expand_devices(device_str):
"""
Expands device strings like:
- "/dev/ttyUSB0, /dev/ttyUSB1" -> ['/dev/ttyUSB0', '/dev/ttyUSB1']
- "/dev/ttyUSB0-5" -> ['/dev/ttyUSB0', ... '/dev/ttyUSB5']
"""
devices = []
parts = [d.strip() for d in device_str.split(',')]
for part in parts:
# Check for range syntax (e.g. /dev/ttyUSB0-29)
# Matches "prefix" + "start_num" + "-" + "end_num"
match = re.match(r'^(.*?)(\d+)-(\d+)$', part)
if match:
prefix = match.group(1)
start = int(match.group(2))
end = int(match.group(3))
prefix, start, end = match.group(1), int(match.group(2)), int(match.group(3))
step = 1 if end >= start else -1
for i in range(start, end + step, step):
devices.append(f"{prefix}{i}")
@ -98,119 +76,31 @@ def expand_devices(device_str):
return devices
async def main():
parser = argparse.ArgumentParser(description='Control ESP32 iperf concurrently')
parser.add_argument('action', choices=['start', 'stop'], help='Action to perform')
parser.add_argument('--devices', required=True,
help='Device list (e.g., "/dev/ttyUSB0-29" or "/dev/ttyUSB0,/dev/ttyUSB1")')
parser = argparse.ArgumentParser()
parser.add_argument('action', choices=['start', 'stop', 'pps', 'status'])
parser.add_argument('--value', type=int, help='Value for PPS command')
parser.add_argument('--devices', required=True, help="/dev/ttyUSB0-29")
args = parser.parse_args()
if args.action == 'pps' and not args.value:
print("Error: 'pps' action requires --value")
sys.exit(1)
if sys.platform == 'win32':
asyncio.set_event_loop(asyncio.ProactorEventLoop())
if sys.platform == 'win32': asyncio.set_event_loop(asyncio.ProactorEventLoop())
# 1. Expand device list
device_list = expand_devices(args.devices)
print(f"Targeting {len(device_list)} devices for '{args.action.upper()}'...")
devs = expand_devices(args.devices)
print(f"Executing '{args.action}' on {len(devs)} devices...")
# 2. Create tasks for all devices
tasks = [run_single_device(dev, args.action) for dev in device_list]
# 3. Run all concurrently
tasks = [run_device(d, args) for d in devs]
results = await asyncio.gather(*tasks)
# 4. Summary
success_count = results.count(True)
print(f"\nSummary: {success_count}/{len(device_list)} Succeeded")
print("\nResults:")
for dev, res in zip(devs, results):
if args.action == 'status':
print(f"{dev}: {res if res else 'TIMEOUT'} PPS")
else:
status = "OK" if res is True else "FAIL"
print(f"{dev}: {status}")
if __name__ == '__main__':
try:
asyncio.run(main())
except KeyboardInterrupt:
pass
#!/usr/bin/env python3
import asyncio
import argparse
import serial_asyncio
import sys
class SerialController(asyncio.Protocol):
def __init__(self, command, loop):
self.command = command
self.loop = loop
self.transport = None
self.response_buffer = ""
# Keywords the firmware will print to confirm action
self.target_keyword = "IPERF_STARTED" if "start" in command else "IPERF_STOPPED"
def connection_made(self, transport):
self.transport = transport
print(f"Connected. Sending: iperf {self.command}")
# 1. Clear line noise
transport.write(b'\n')
# 2. Schedule command
self.loop.create_task(self.send_command())
async def send_command(self):
await asyncio.sleep(0.1)
# SPACE separated subcommand: "iperf start" or "iperf stop"
full_cmd = f"iperf {self.command}\n"
self.transport.write(full_cmd.encode())
def data_received(self, data):
text = data.decode(errors='ignore')
sys.stdout.write(text) # Echo firmware output to console
self.response_buffer += text
# Check for confirmation keyword
if self.target_keyword in self.response_buffer:
print(f"\n[SUCCESS] Confirmed: {self.target_keyword}")
self.transport.close()
self.loop.stop()
def connection_lost(self, exc):
if exc:
print(f"Serial connection lost: {exc}")
self.loop.stop()
async def run_control(port, action):
loop = asyncio.get_running_loop()
try:
transport, protocol = await serial_asyncio.create_serial_connection(
loop,
lambda: SerialController(action, loop),
port,
baudrate=115200
)
except Exception as e:
print(f"Failed to open port {port}: {e}")
return
# Safety timeout: 5 seconds
try:
await asyncio.wait_for(loop.create_future(), timeout=5.0)
except asyncio.TimeoutError:
print("\n[TIMEOUT] Firmware did not respond with confirmation keyword.")
except asyncio.CancelledError:
pass
if transport and not transport.is_closing():
transport.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Control ESP32 iperf via USB')
parser.add_argument('port', help='Serial port (e.g., /dev/ttyUSB0)')
parser.add_argument('action', choices=['start', 'stop'], help='Action to perform')
args = parser.parse_args()
if sys.platform == 'win32':
asyncio.set_event_loop(asyncio.ProactorEventLoop())
try:
asyncio.run(run_control(args.port, args.action))
except KeyboardInterrupt:
pass