ESP32/components/iperf/iperf.c

236 lines
8.5 KiB
C

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_timer.h"
#include "nvs_flash.h"
#include "nvs.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "esp_wifi.h"
#include "iperf.h"
#include "status_led.h"
static const char *TAG = "iperf";
static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1)
// Check rate every 500ms
#define RATE_CHECK_INTERVAL_US 500000
// Minimum gap (Safety Limit)
#define MIN_PACING_INTERVAL_US 100
typedef struct {
iperf_cfg_t cfg;
bool finish;
uint32_t buffer_len;
uint8_t *buffer;
} iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0};
static TaskHandle_t s_iperf_task_handle = NULL;
static esp_event_handler_instance_t instance_any_id;
static esp_event_handler_instance_t instance_got_ip;
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return;
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
xEventGroupClearBits(s_iperf_event_group, IPERF_IP_READY_BIT);
status_led_set_state(LED_STATE_NO_CONFIG); // Yellow
}
}
static bool iperf_wait_for_ip(void) {
if (!s_iperf_event_group) s_iperf_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &iperf_network_event_handler, NULL, &instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &iperf_network_event_handler, NULL, &instance_got_ip));
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT);
}
}
EventBits_t bits = xEventGroupWaitBits(s_iperf_event_group, IPERF_IP_READY_BIT | IPERF_STOP_REQ_BIT, pdFALSE, pdFALSE, portMAX_DELAY);
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
return !(bits & IPERF_STOP_REQ_BIT);
}
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
size_t req;
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
cfg->dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
if (period_us < MIN_PACING_INTERVAL_US) {
period_us = MIN_PACING_INTERVAL_US;
ESP_LOGW(TAG, "PPS %" PRIu32 " clamped to max safe rate", pps);
}
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
ESP_LOGI(TAG, "Runtime pacing updated to %" PRIu32 " PPS", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) return ESP_FAIL;
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001);
addr.sin_addr.s_addr = ctrl->cfg.dip;
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
status_led_set_state(LED_STATE_FAILED);
return ESP_FAIL;
}
status_led_set_state(LED_STATE_TRANSMITTING_SLOW); // Default state
int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0;
int64_t enomem_start_time = 0;
while (!ctrl->finish && esp_timer_get_time() < end_time) {
int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000));
else while (esp_timer_get_time() < next_send_time) taskYIELD();
for (int k = 0; k < ctrl->cfg.burst_count; k++) {
int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
if (sent > 0) {
packets_since_check++;
enomem_start_time = 0;
// --- DYNAMIC RATE HEALTH CHECK ---
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
int64_t interval = now - last_rate_check;
double cycles = (double)interval / (double)ctrl->cfg.pacing_period_us;
uint32_t expected_pkts = (uint32_t)(cycles * ctrl->cfg.burst_count);
// Threshold: 75% of expected rate
uint32_t threshold = (expected_pkts * 3) / 4;
led_state_t target = (packets_since_check >= threshold)
? LED_STATE_TRANSMITTING // Busy (Fast Flash)
: LED_STATE_TRANSMITTING_SLOW; // Slow (Slow Pulse)
if (status_led_get_state() != target) status_led_set_state(target);
last_rate_check = now;
packets_since_check = 0;
}
} else {
if (errno == 12) { // ENOMEM
if (status_led_get_state() != LED_STATE_STALLED) status_led_set_state(LED_STATE_STALLED);
if (enomem_start_time == 0) enomem_start_time = now;
else if (now - enomem_start_time > 10000000) {
status_led_set_state(LED_STATE_FAILED); goto exit;
}
vTaskDelay(pdMS_TO_TICKS(10));
} else {
status_led_set_state(LED_STATE_FAILED); goto exit;
}
}
}
next_send_time += ctrl->cfg.pacing_period_us;
}
exit:
if (status_led_get_state() != LED_STATE_FAILED) {
EventBits_t bits = xEventGroupGetBits(s_iperf_event_group);
status_led_set_state((bits & IPERF_IP_READY_BIT) ? LED_STATE_CONNECTED : LED_STATE_NO_CONFIG);
}
close(sockfd);
return ESP_OK;
}
static void iperf_task(void *arg) {
iperf_start_udp_client((iperf_ctrl_t *)arg);
free(((iperf_ctrl_t *)arg)->buffer);
vTaskDelete(NULL);
}
void iperf_start(iperf_cfg_t *cfg) {
if (s_iperf_task_handle) return;
s_iperf_ctrl.cfg = *cfg;
if (s_iperf_ctrl.cfg.send_len == 0) s_iperf_ctrl.cfg.send_len = 1470;
if (s_iperf_ctrl.cfg.pacing_period_us == 0) s_iperf_ctrl.cfg.pacing_period_us = 10000;
if (s_iperf_ctrl.cfg.burst_count == 0) s_iperf_ctrl.cfg.burst_count = 1;
iperf_read_nvs_config(&s_iperf_ctrl.cfg);
s_iperf_ctrl.finish = false;
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
s_iperf_event_group = xEventGroupCreate();
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
}
void iperf_stop(void) {
if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
}
}