Compare commits

..

7 Commits

Author SHA1 Message Date
Robert McMahon e5baa7cec5 fix gps sync 2025-12-19 12:10:35 -08:00
Robert McMahon 3969c5780d nvs saves 2025-12-19 10:36:10 -08:00
Robert McMahon ca8b382a40 more on console 2025-12-19 10:21:08 -08:00
Robert McMahon 0f1c5b3079 more on console 2025-12-19 10:12:32 -08:00
Robert McMahon 796ef43497 more command & console work, including save and reload 2025-12-18 21:43:18 -08:00
Robert McMahon 87744e2883 Merge branch 'feature/generic-shell' of https://git.umbernetworks.com/Umber/ESP32 into feature/generic-shell 2025-12-18 17:55:08 -08:00
Robert McMahon c640bc4df7 fixes to deploy to update udev rules 2025-12-18 17:53:11 -08:00
15 changed files with 1227 additions and 537 deletions

View File

@ -1,3 +1,3 @@
idf_component_register(SRCS "app_console.c" idf_component_register(SRCS "app_console.c"
INCLUDE_DIRS "." INCLUDE_DIRS "."
PRIV_REQUIRES console wifi_cfg iperf) PRIV_REQUIRES console wifi_cfg wifi_controller iperf nvs_flash)

View File

@ -4,16 +4,136 @@
#include "argtable3/argtable3.h" #include "argtable3/argtable3.h"
#include "wifi_cfg.h" #include "wifi_cfg.h"
#include "iperf.h" #include "iperf.h"
#include "wifi_controller.h"
#include "esp_wifi.h"
#include "nvs.h"
#include "nvs_flash.h"
#include <string.h> #include <string.h>
#include <arpa/inet.h>
#include <inttypes.h>
// --- Helper: Prompt Update ---
// Updates the "esp32>" vs "esp32*>" prompt based on dirty state
static void end_cmd(void) {
app_console_update_prompt();
}
// ============================================================================
// COMMAND: nvs (Storage Management)
// ============================================================================
static struct {
struct arg_lit *dump;
struct arg_lit *clear_all;
struct arg_lit *help;
struct arg_end *end;
} nvs_args;
static void print_nvs_key_str(nvs_handle_t h, const char *key, const char *label) {
char buf[64] = {0};
size_t len = sizeof(buf);
if (nvs_get_str(h, key, buf, &len) == ESP_OK) {
printf(" %-12s : %s\n", label, buf);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static void print_nvs_key_u32(nvs_handle_t h, const char *key, const char *label) {
uint32_t val = 0;
if (nvs_get_u32(h, key, &val) == ESP_OK) {
printf(" %-12s : %" PRIu32 "\n", label, val);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static void print_nvs_key_u8(nvs_handle_t h, const char *key, const char *label) {
uint8_t val = 0;
if (nvs_get_u8(h, key, &val) == ESP_OK) {
printf(" %-12s : %u\n", label, val);
} else {
printf(" %-12s : <empty>\n", label);
}
}
static int cmd_nvs(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&nvs_args);
if (nerrors > 0) {
arg_print_errors(stderr, nvs_args.end, argv[0]);
return 1;
}
if (nvs_args.help->count > 0) {
printf("Usage: nvs [--dump] [--clear-all]\n");
return 0;
}
// --- CLEAR ALL ---
if (nvs_args.clear_all->count > 0) {
printf("Erasing ALL settings from NVS...\n");
wifi_cfg_clear_credentials();
wifi_cfg_clear_monitor_channel();
iperf_param_clear();
printf("Done. Please reboot.\n");
end_cmd();
return 0;
}
// --- DUMP ---
printf("\n--- [WiFi Config (netcfg)] ---\n");
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READONLY, &h) == ESP_OK) {
print_nvs_key_str(h, "ssid", "SSID");
print_nvs_key_str(h, "pass", "Password");
print_nvs_key_str(h, "ip", "Static IP");
print_nvs_key_str(h, "mask", "Netmask");
print_nvs_key_str(h, "gw", "Gateway");
print_nvs_key_u8 (h, "dhcp", "DHCP");
print_nvs_key_u8 (h, "mon_ch", "Monitor Ch");
nvs_close(h);
} else {
printf("Failed to open 'netcfg' namespace.\n");
}
printf("\n--- [iPerf Config (storage)] ---\n");
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
print_nvs_key_str(h, "iperf_dst_ip", "Dest IP");
print_nvs_key_u32(h, "iperf_port", "Port");
print_nvs_key_u32(h, "iperf_pps", "Target PPS");
print_nvs_key_u32(h, "iperf_len", "Packet Len");
print_nvs_key_u32(h, "iperf_burst", "Burst");
nvs_close(h);
} else {
printf("Failed to open 'storage' namespace.\n");
}
printf("\n");
end_cmd();
return 0;
}
static void register_nvs_cmd(void) {
nvs_args.dump = arg_lit0(NULL, "dump", "Show all");
nvs_args.clear_all = arg_lit0(NULL, "clear-all", "Factory Reset");
nvs_args.help = arg_lit0("h", "help", "Help");
nvs_args.end = arg_end(1);
const esp_console_cmd_t cmd = {
.command = "nvs",
.help = "Storage Management",
.func = &cmd_nvs,
.argtable = &nvs_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================ // ============================================================================
// COMMAND: iperf // COMMAND: iperf
// ============================================================================ // ============================================================================
static struct { static struct {
struct arg_lit *start; struct arg_lit *start, *stop, *status, *save, *reload;
struct arg_lit *stop; struct arg_lit *clear_nvs;
struct arg_lit *status; struct arg_str *ip;
struct arg_int *pps; struct arg_int *port, *pps, *len, *burst;
struct arg_lit *help; struct arg_lit *help;
struct arg_end *end; struct arg_end *end;
} iperf_args; } iperf_args;
@ -26,55 +146,222 @@ static int cmd_iperf(int argc, char **argv) {
} }
if (iperf_args.help->count > 0) { if (iperf_args.help->count > 0) {
printf("Usage: iperf [start|stop|status] [--pps <n>]\n"); printf("Usage: iperf [options]\n");
printf(" --start Start traffic\n");
printf(" --stop Stop traffic\n");
printf(" --save Save config to NVS\n");
printf(" --clear-nvs Reset to defaults\n");
printf(" -c <ip> Set Dest IP\n");
printf(" --pps <n> Set Packets Per Sec\n");
return 0; return 0;
} }
if (iperf_args.stop->count > 0) { if (iperf_args.clear_nvs->count > 0) {
iperf_stop(); iperf_param_clear();
printf("iPerf Configuration cleared (Reset to defaults).\n");
end_cmd();
return 0; return 0;
} }
if (iperf_args.reload->count > 0) {
iperf_param_init();
printf("Configuration reloaded from NVS.\n");
}
bool config_changed = false;
iperf_cfg_t cfg;
iperf_param_get(&cfg);
if (iperf_args.ip->count > 0) { cfg.dip = inet_addr(iperf_args.ip->sval[0]); config_changed = true; }
if (iperf_args.port->count > 0) { cfg.dport = (uint16_t)iperf_args.port->ival[0]; config_changed = true; }
if (iperf_args.len->count > 0) { cfg.send_len = (uint32_t)iperf_args.len->ival[0]; config_changed = true; }
if (iperf_args.burst->count > 0) { cfg.burst_count = (uint32_t)iperf_args.burst->ival[0]; config_changed = true; }
if (iperf_args.pps->count > 0) { if (iperf_args.pps->count > 0) {
int val = iperf_args.pps->ival[0]; if (iperf_args.pps->ival[0] > 0) {
if (val > 0) { cfg.target_pps = (uint32_t)iperf_args.pps->ival[0];
iperf_set_pps((uint32_t)val); config_changed = true;
}
}
if (config_changed) {
iperf_param_set(&cfg);
printf("RAM configuration updated.\n");
}
if (iperf_args.save->count > 0) {
bool changed = false;
if (iperf_param_save(&changed) == ESP_OK) {
printf(changed ? "Configuration saved to NVS.\n" : "No changes to save (NVS matches RAM).\n");
} else { } else {
printf("Error: PPS must be > 0\n"); printf("Error saving to NVS.\n");
} }
return 0;
} }
if (iperf_args.status->count > 0) { if (iperf_args.stop->count > 0) iperf_stop();
iperf_print_status(); if (iperf_args.start->count > 0) iperf_start();
return 0; if (iperf_args.status->count > 0) iperf_print_status();
}
if (iperf_args.start->count > 0) {
// Start using saved NVS config
iperf_cfg_t cfg = { .time = 0 };
iperf_start(&cfg);
return 0;
}
end_cmd();
return 0; return 0;
} }
static void register_iperf_cmd(void) { static void register_iperf_cmd(void) {
iperf_args.start = arg_lit0(NULL, "start", "Start iperf traffic"); iperf_args.start = arg_lit0(NULL, "start", "Start");
iperf_args.stop = arg_lit0(NULL, "stop", "Stop iperf traffic"); iperf_args.stop = arg_lit0(NULL, "stop", "Stop");
iperf_args.status = arg_lit0(NULL, "status", "Show current statistics"); iperf_args.status = arg_lit0(NULL, "status", "Status");
iperf_args.pps = arg_int0(NULL, "pps", "<n>", "Set packets per second"); iperf_args.save = arg_lit0(NULL, "save", "Save");
iperf_args.help = arg_lit0(NULL, "help", "Show help"); iperf_args.reload = arg_lit0(NULL, "reload", "Reload");
iperf_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS");
iperf_args.ip = arg_str0("c", "client", "<ip>", "IP");
iperf_args.port = arg_int0("p", "port", "<port>", "Port");
iperf_args.pps = arg_int0(NULL, "pps", "<n>", "PPS");
iperf_args.len = arg_int0(NULL, "len", "<bytes>", "Len");
iperf_args.burst = arg_int0(NULL, "burst", "<count>", "Burst");
iperf_args.help = arg_lit0("h", "help", "Help");
iperf_args.end = arg_end(20); iperf_args.end = arg_end(20);
const esp_console_cmd_t cmd = { const esp_console_cmd_t cmd = { .command = "iperf", .help = "Traffic Gen", .func = &cmd_iperf, .argtable = &iperf_args };
.command = "iperf", ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
.help = "Control iperf traffic generator", }
.hint = NULL,
.func = &cmd_iperf, // ============================================================================
.argtable = &iperf_args // COMMAND: monitor
}; // ============================================================================
static struct {
struct arg_lit *start, *stop, *status, *save, *reload;
struct arg_lit *clear_nvs;
struct arg_int *channel;
struct arg_lit *help;
struct arg_end *end;
} mon_args;
static int cmd_monitor(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&mon_args);
if (nerrors > 0) {
arg_print_errors(stderr, mon_args.end, argv[0]);
return 1;
}
if (mon_args.help->count > 0) {
printf("Usage: monitor [--start|--stop] [-c <ch>] [--save|--reload]\n");
return 0;
}
if (mon_args.clear_nvs->count > 0) {
wifi_ctl_param_clear();
printf("Monitor config cleared (Defaulting to Ch 6).\n");
end_cmd();
return 0;
}
if (mon_args.reload->count > 0) {
wifi_ctl_param_reload();
printf("Config reloaded from NVS.\n");
}
if (mon_args.channel->count > 0) {
wifi_ctl_param_set_monitor_channel((uint8_t)mon_args.channel->ival[0]);
printf("Channel set to %d (RAM).\n", mon_args.channel->ival[0]);
}
if (mon_args.save->count > 0) {
if (wifi_ctl_param_save()) printf("Configuration saved to NVS.\n");
else printf("No changes to save (NVS matches RAM).\n");
}
if (mon_args.stop->count > 0) {
wifi_ctl_switch_to_sta(WIFI_BW_HT20);
printf("Switched to Station Mode.\n");
}
if (mon_args.start->count > 0) {
if (wifi_ctl_switch_to_monitor(0, WIFI_BW_HT20) == ESP_OK) printf("Monitor Mode Started.\n");
else printf("Failed to start Monitor Mode.\n");
}
if (mon_args.status->count > 0) {
wifi_ctl_mode_t mode = wifi_ctl_get_mode();
printf("MONITOR STATUS:\n");
printf(" Mode: %s\n", (mode == WIFI_CTL_MODE_MONITOR) ? "MONITOR" : "STATION");
printf(" Active: Ch %d\n", (mode == WIFI_CTL_MODE_MONITOR) ? wifi_ctl_get_monitor_channel() : 0);
printf(" Staged: Ch %d\n", wifi_ctl_param_get_monitor_channel());
printf(" Frames: %" PRIu32 "\n", wifi_ctl_get_monitor_frame_count());
}
end_cmd();
return 0;
}
static void register_monitor_cmd(void) {
mon_args.start = arg_lit0(NULL, "start", "Start");
mon_args.stop = arg_lit0(NULL, "stop", "Stop");
mon_args.status = arg_lit0(NULL, "status", "Status");
mon_args.save = arg_lit0(NULL, "save", "Save");
mon_args.reload = arg_lit0(NULL, "reload", "Reload");
mon_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS");
mon_args.channel = arg_int0("c", "channel", "<n>", "Chan");
mon_args.help = arg_lit0("h", "help", "Help");
mon_args.end = arg_end(20);
const esp_console_cmd_t cmd = { .command = "monitor", .help = "Monitor Mode", .func = &cmd_monitor, .argtable = &mon_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
}
// ============================================================================
// COMMAND: scan
// ============================================================================
static struct {
struct arg_lit *help;
struct arg_end *end;
} scan_args;
static int cmd_scan(int argc, char **argv) {
int nerrors = arg_parse(argc, argv, (void **)&scan_args);
if (nerrors > 0) {
arg_print_errors(stderr, scan_args.end, argv[0]);
return 1;
}
if (scan_args.help->count > 0) {
printf("Usage: scan\n");
return 0;
}
printf("Starting WiFi Scan...\n");
// Force STA mode to allow scanning
wifi_ctl_switch_to_sta(WIFI_BW_HT20);
wifi_scan_config_t scan_config = { .show_hidden = true };
esp_err_t err = esp_wifi_scan_start(&scan_config, true);
if (err != ESP_OK) {
printf("Scan failed: %s\n", esp_err_to_name(err));
return 1;
}
uint16_t ap_count = 0;
esp_wifi_scan_get_ap_num(&ap_count);
printf("Found %d APs:\n", ap_count);
if (ap_count > 0) {
wifi_ap_record_t *ap_list = (wifi_ap_record_t *)malloc(sizeof(wifi_ap_record_t) * ap_count);
if (ap_list) {
esp_wifi_scan_get_ap_records(&ap_count, ap_list);
printf("%-32s | %-4s | %-4s | %-3s\n", "SSID", "RSSI", "CH", "Auth");
printf("----------------------------------------------------------\n");
for (int i = 0; i < ap_count; i++) {
printf("%-32s | %-4d | %-4d | %d\n", (char *)ap_list[i].ssid, ap_list[i].rssi, ap_list[i].primary, ap_list[i].authmode);
}
free(ap_list);
}
}
return 0;
}
static void register_scan_cmd(void) {
scan_args.help = arg_lit0("h", "help", "Help");
scan_args.end = arg_end(1);
const esp_console_cmd_t cmd = { .command = "scan", .help = "WiFi Scan", .func = &cmd_scan, .argtable = &scan_args };
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd)); ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
} }
@ -86,6 +373,7 @@ static struct {
struct arg_str *pass; struct arg_str *pass;
struct arg_str *ip; struct arg_str *ip;
struct arg_lit *dhcp; struct arg_lit *dhcp;
struct arg_lit *clear_nvs;
struct arg_lit *help; struct arg_lit *help;
struct arg_end *end; struct arg_end *end;
} wifi_args; } wifi_args;
@ -98,7 +386,13 @@ static int cmd_wifi_config(int argc, char **argv) {
} }
if (wifi_args.help->count > 0) { if (wifi_args.help->count > 0) {
printf("Usage: wifi_config -s <ssid> -p <pass> [-i <ip>] [-d]\n"); printf("Usage: wifi_config -s <ssid> [-p <pass>] [--clear-nvs]\n");
return 0;
}
if (wifi_args.clear_nvs->count > 0) {
wifi_cfg_clear_credentials();
printf("WiFi Credentials CLEARED from NVS.\n");
return 0; return 0;
} }
@ -109,7 +403,6 @@ static int cmd_wifi_config(int argc, char **argv) {
const char* ssid = wifi_args.ssid->sval[0]; const char* ssid = wifi_args.ssid->sval[0];
const char* pass = (wifi_args.pass->count > 0) ? wifi_args.pass->sval[0] : ""; const char* pass = (wifi_args.pass->count > 0) ? wifi_args.pass->sval[0] : "";
const char* ip = (wifi_args.ip->count > 0) ? wifi_args.ip->sval[0] : NULL; const char* ip = (wifi_args.ip->count > 0) ? wifi_args.ip->sval[0] : NULL;
bool dhcp = (wifi_args.dhcp->count > 0); bool dhcp = (wifi_args.dhcp->count > 0);
@ -120,10 +413,7 @@ static int cmd_wifi_config(int argc, char **argv) {
if (ip) { if (ip) {
char mask[] = "255.255.255.0"; char mask[] = "255.255.255.0";
char gw[32]; char gw[32];
// FIXED: Use strlcpy instead of strncpy to prevent truncation warnings
strlcpy(gw, ip, sizeof(gw)); strlcpy(gw, ip, sizeof(gw));
char *last_dot = strrchr(gw, '.'); char *last_dot = strrchr(gw, '.');
if (last_dot) strcpy(last_dot, ".1"); if (last_dot) strcpy(last_dot, ".1");
@ -139,24 +429,22 @@ static int cmd_wifi_config(int argc, char **argv) {
} }
static void register_wifi_cmd(void) { static void register_wifi_cmd(void) {
wifi_args.ssid = arg_str0("s", "ssid", "<ssid>", "WiFi SSID"); wifi_args.ssid = arg_str0("s", "ssid", "<ssid>", "SSID");
wifi_args.pass = arg_str0("p", "password", "<pass>", "WiFi Password"); wifi_args.pass = arg_str0("p", "password", "<pass>", "Pass");
wifi_args.ip = arg_str0("i", "ip", "<ip>", "Static IP"); wifi_args.ip = arg_str0("i", "ip", "<ip>", "Static IP");
wifi_args.dhcp = arg_lit0("d", "dhcp", "Enable DHCP"); wifi_args.dhcp = arg_lit0("d", "dhcp", "Enable DHCP");
wifi_args.help = arg_lit0("h", "help", "Show help"); wifi_args.clear_nvs = arg_lit0(NULL, "clear-nvs", "Clear NVS");
wifi_args.help = arg_lit0("h", "help", "Help");
wifi_args.end = arg_end(20); wifi_args.end = arg_end(20);
const esp_console_cmd_t cmd = { const esp_console_cmd_t cmd = { .command = "wifi_config", .help = "Configure WiFi", .func = &cmd_wifi_config, .argtable = &wifi_args };
.command = "wifi_config",
.help = "Configure WiFi credentials",
.hint = NULL,
.func = &cmd_wifi_config,
.argtable = &wifi_args
};
ESP_ERROR_CHECK(esp_console_cmd_register(&cmd)); ESP_ERROR_CHECK(esp_console_cmd_register(&cmd));
} }
void app_console_register_commands(void) { void app_console_register_commands(void) {
register_iperf_cmd(); register_iperf_cmd();
register_monitor_cmd();
register_scan_cmd();
register_wifi_cmd(); register_wifi_cmd();
register_nvs_cmd();
} }

View File

@ -8,6 +8,8 @@ extern "C" {
* @brief Register application-specific console commands * @brief Register application-specific console commands
*/ */
void app_console_register_commands(void); void app_console_register_commands(void);
// Implemented in main.c - updates prompt based on NVS dirty state
void app_console_update_prompt(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -20,49 +20,61 @@ static const char *TAG = "GPS_SYNC";
static uart_port_t gps_uart_num = UART_NUM_1; static uart_port_t gps_uart_num = UART_NUM_1;
static int64_t monotonic_offset_us = 0; static int64_t monotonic_offset_us = 0;
static volatile int64_t last_pps_monotonic = 0; static volatile int64_t last_pps_monotonic = 0;
static volatile time_t next_pps_gps_second = 0;
static bool gps_has_fix = false; static bool gps_has_fix = false;
static bool use_gps_for_logs = false; static bool use_gps_for_logs = false;
static SemaphoreHandle_t sync_mutex; static SemaphoreHandle_t sync_mutex;
static volatile bool force_sync_update = true; static volatile bool force_sync_update = true;
// PPS interrupt // PPS interrupt
// Stores the monotonic time of the rising edge of the PPS signal
static void IRAM_ATTR pps_isr_handler(void* arg) { static void IRAM_ATTR pps_isr_handler(void* arg) {
static bool onetime = true; // Capture time immediately
last_pps_monotonic = esp_timer_get_time(); int64_t now = esp_timer_get_time();
if (onetime) { last_pps_monotonic = now;
esp_rom_printf("PPS connected!\n");
onetime = false;
}
} }
// Parse GPS time from NMEA // Parse GPS time from NMEA (GPRMC or GNRMC)
static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) { static bool parse_gprmc(const char* nmea, struct tm* tm_out, bool* valid) {
// Check Header
if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) return false; if (strncmp(nmea, "$GPRMC", 6) != 0 && strncmp(nmea, "$GNRMC", 6) != 0) return false;
// Find Time Field
char *p = strchr(nmea, ','); char *p = strchr(nmea, ',');
if (!p) return false; if (!p) return false;
p++; p++; // Move past comma
int hour, min, sec; int hour, min, sec;
// Scan %2d%2d%2d effectively, using floats can be safer for sub-seconds but int is fine for PPS
if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) return false; if (sscanf(p, "%2d%2d%2d", &hour, &min, &sec) != 3) return false;
// Find Status Field (A=Active/Valid, V=Void)
p = strchr(p, ','); p = strchr(p, ',');
if (!p) return false; if (!p) return false;
p++; p++;
*valid = (*p == 'A'); *valid = (*p == 'A');
// Skip Latitude, N/S, Longitude, E/W, Speed, Course (6 fields)
for (int i = 0; i < 7; i++) { for (int i = 0; i < 7; i++) {
p = strchr(p, ','); p = strchr(p, ',');
if (!p) return false; if (!p) return false;
p++; p++;
} }
// Date Field
int day, month, year; int day, month, year;
if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) return false; if (sscanf(p, "%2d%2d%2d", &day, &month, &year) != 3) return false;
// Adjust Year (NMEA provides 2 digits)
year += (year < 80) ? 2000 : 1900; year += (year < 80) ? 2000 : 1900;
tm_out->tm_sec = sec; tm_out->tm_sec = sec;
tm_out->tm_min = min; tm_out->tm_min = min;
tm_out->tm_hour = hour; tm_out->tm_hour = hour;
tm_out->tm_mday = day; tm_out->tm_mday = day;
tm_out->tm_mon = month - 1; tm_out->tm_mon = month - 1; // tm_mon is 0-11
tm_out->tm_year = year - 1900; tm_out->tm_year = year - 1900; // tm_year is years since 1900
tm_out->tm_isdst = 0; tm_out->tm_isdst = 0;
return true; return true;
} }
@ -71,115 +83,159 @@ void gps_force_next_update(void) {
ESP_LOGW(TAG, "Requesting forced GPS sync update"); ESP_LOGW(TAG, "Requesting forced GPS sync update");
} }
// Helper to convert struct tm to time_t (UTC assumption)
// Uses standard mktime but we assume TZ is handled or default is UTC
static time_t timegm_impl(struct tm *tm) {
time_t t = mktime(tm);
return t;
}
static void gps_task(void* arg) { static void gps_task(void* arg) {
uint8_t d_buf[64]; uint8_t d_buf[64];
char line[128]; char line[128];
int pos = 0; int pos = 0;
static int log_counter = 0; static int log_counter = 0;
// Ensure timezone is UTC for correct time math
setenv("TZ", "UTC", 1);
tzset();
while (1) { while (1) {
// Read from UART with a reasonable timeout
int len = uart_read_bytes(gps_uart_num, d_buf, sizeof(d_buf), pdMS_TO_TICKS(100)); int len = uart_read_bytes(gps_uart_num, d_buf, sizeof(d_buf), pdMS_TO_TICKS(100));
if (len > 0) { if (len > 0) {
for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
uint8_t data = d_buf[i]; uint8_t data = d_buf[i];
if (data == '\n') {
// Buffer the line
if (data == '\n' || data == '\r') {
if (pos > 0) {
line[pos] = '\0'; line[pos] = '\0';
struct tm gps_tm; struct tm gps_tm;
bool valid; bool valid_fix;
if (parse_gprmc(line, &gps_tm, &valid)) {
if (valid) { // Try to parse GPRMC
time_t gps_time = mktime(&gps_tm); if (parse_gprmc(line, &gps_tm, &valid_fix)) {
if (valid_fix) {
// 1. Convert Parsed Time to Seconds
time_t gps_time_sec = timegm_impl(&gps_tm);
// 2. Critical Section: Read PPS Timestamp
xSemaphoreTake(sync_mutex, portMAX_DELAY); xSemaphoreTake(sync_mutex, portMAX_DELAY);
next_pps_gps_second = gps_time + 1; int64_t last_pps = last_pps_monotonic;
xSemaphoreGive(sync_mutex); xSemaphoreGive(sync_mutex);
vTaskDelay(pdMS_TO_TICKS(300));
// 3. Analyze Timing
int64_t now = esp_timer_get_time();
int64_t age_us = now - last_pps;
// The PPS pulse described by this message should have happened
// fairly recently (e.g., within the last 800ms).
// If age > 900ms, we likely missed the pulse or UART is lagging badly.
if (last_pps > 0 && age_us < 900000) {
// Calculate Offset
// GPS Time (in microseconds) = Seconds * 1M
int64_t gps_time_us = (int64_t)gps_time_sec * 1000000LL;
// Offset = GPS_Timestamp - Monotonic_Timestamp
// This means: GPS = Monotonic + Offset
int64_t new_offset = gps_time_us - last_pps;
xSemaphoreTake(sync_mutex, portMAX_DELAY); xSemaphoreTake(sync_mutex, portMAX_DELAY);
if (last_pps_monotonic > 0) {
int64_t gps_us = (int64_t)next_pps_gps_second * 1000000LL;
int64_t new_offset = gps_us - last_pps_monotonic;
if (monotonic_offset_us == 0 || force_sync_update) { if (monotonic_offset_us == 0 || force_sync_update) {
// Hard Snap (First fix or Forced)
monotonic_offset_us = new_offset; monotonic_offset_us = new_offset;
if (force_sync_update) { if (force_sync_update) {
ESP_LOGW(TAG, "GPS sync SNAP: Offset forced to %" PRIi64 " us", monotonic_offset_us); ESP_LOGW(TAG, "GPS SNAP: Offset forced to %" PRIi64 " us", monotonic_offset_us);
force_sync_update = false; force_sync_update = false;
log_counter = 0; log_counter = 0; // Force immediate log
} }
} else { } else {
// Exponential Smoothing (Filter Jitter)
// 90% old, 10% new
monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10; monotonic_offset_us = (monotonic_offset_us * 9 + new_offset) / 10;
} }
gps_has_fix = true; gps_has_fix = true;
if (log_counter == 0) { xSemaphoreGive(sync_mutex);
ESP_LOGI(TAG, "GPS sync: %04d-%02d-%02d %02d:%02d:%02d, offset=%" PRIi64 " us",
gps_tm.tm_year + 1900, gps_tm.tm_mon + 1, gps_tm.tm_mday, // Periodic Logging
if (log_counter <= 0) {
ESP_LOGI(TAG, "GPS Sync: %02d:%02d:%02d | Offset: %" PRIi64 " us | PPS Age: %" PRIi64 " ms",
gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec, gps_tm.tm_hour, gps_tm.tm_min, gps_tm.tm_sec,
monotonic_offset_us); monotonic_offset_us, age_us / 1000);
log_counter = 60; log_counter = 10; // Log every 10 valid fixes
}
log_counter--;
} else {
// PPS signal lost or not correlated
if (log_counter <= 0) {
ESP_LOGW(TAG, "GPS valid but PPS missing/old (Age: %" PRIi64 " ms)", age_us / 1000);
log_counter = 10;
} }
log_counter--; log_counter--;
} }
xSemaphoreGive(sync_mutex);
} else { } else {
gps_has_fix = false; gps_has_fix = false;
} }
} }
}
pos = 0; pos = 0;
} else if (pos < sizeof(line) - 1) { } else {
if (pos < sizeof(line) - 1) {
line[pos++] = data; line[pos++] = data;
} }
} }
} }
} }
}
} }
void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps) { void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps) {
ESP_LOGI(TAG, "Checking for GPS PPS signal on GPIO %d...", config->pps_pin); ESP_LOGI(TAG, "Initializing GPS Sync (UART %d, PPS GPIO %d)", config->uart_port, config->pps_pin);
// 1. Configure PPS pin as Input to sense signal // 1. Initial PPS Pin Check (Input Mode)
gpio_config_t pps_conf = { // We poll briefly just to see if the pin is physically toggling before committing resources.
gpio_config_t pps_poll_conf = {
.pin_bit_mask = (1ULL << config->pps_pin), .pin_bit_mask = (1ULL << config->pps_pin),
.mode = GPIO_MODE_INPUT, .mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_DISABLE, .pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE, // High-Z to detect active driving .pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE .intr_type = GPIO_INTR_DISABLE
}; };
ESP_ERROR_CHECK(gpio_config(&pps_conf)); ESP_ERROR_CHECK(gpio_config(&pps_poll_conf));
// 2. Poll for ~3 seconds to detect ANY edge transition
bool pps_detected = false; bool pps_detected = false;
int start_level = gpio_get_level(config->pps_pin); int start_level = gpio_get_level(config->pps_pin);
// Poll for up to 2 seconds
// Poll loop: 3000 iterations * 1ms = 3 seconds for (int i = 0; i < 2000; i++) {
for (int i = 0; i < 3000; i++) { if (gpio_get_level(config->pps_pin) != start_level) {
int current_level = gpio_get_level(config->pps_pin);
if (current_level != start_level) {
pps_detected = true; pps_detected = true;
break; // Signal found! break;
} }
vTaskDelay(pdMS_TO_TICKS(1)); vTaskDelay(pdMS_TO_TICKS(1));
} }
if (!pps_detected) { if (!pps_detected) {
printf("GPS PPS not found over GPIO with pin number %d\n", config->pps_pin); ESP_LOGW(TAG, "No PPS signal detected on GPIO %d during boot check.", config->pps_pin);
ESP_LOGW(TAG, "GPS initialization aborted due to lack of PPS signal."); // We continue anyway, as GPS might gain lock later.
return; // ABORT INITIALIZATION } else {
ESP_LOGI(TAG, "PPS signal activity detected.");
} }
ESP_LOGI(TAG, "PPS signal detected! Initializing GPS subsystem..."); // 2. Setup Globals
// 3. Proceed with Full Initialization
gps_uart_num = config->uart_port; gps_uart_num = config->uart_port;
use_gps_for_logs = use_gps_log_timestamps; use_gps_for_logs = use_gps_log_timestamps;
gps_force_next_update(); gps_force_next_update();
sync_mutex = xSemaphoreCreateMutex();
if (use_gps_log_timestamps) { if (use_gps_log_timestamps) {
ESP_LOGI(TAG, "ESP_LOG timestamps: GPS time in seconds.milliseconds format");
esp_log_set_vprintf(gps_log_vprintf); esp_log_set_vprintf(gps_log_vprintf);
} }
sync_mutex = xSemaphoreCreateMutex(); // 3. Setup UART
uart_config_t uart_config = { uart_config_t uart_config = {
.baud_rate = GPS_BAUD_RATE, .baud_rate = GPS_BAUD_RATE,
.data_bits = UART_DATA_8_BITS, .data_bits = UART_DATA_8_BITS,
@ -191,49 +247,48 @@ void gps_sync_init(const gps_sync_config_t *config, bool use_gps_log_timestamps)
ESP_ERROR_CHECK(uart_driver_install(config->uart_port, UART_BUF_SIZE, 0, 0, NULL, 0)); ESP_ERROR_CHECK(uart_driver_install(config->uart_port, UART_BUF_SIZE, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(config->uart_port, &uart_config)); ESP_ERROR_CHECK(uart_param_config(config->uart_port, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(config->uart_port, config->tx_pin, config->rx_pin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_set_pin(config->uart_port, // 4. Setup PPS Interrupt (Rising Edge)
config->tx_pin, gpio_config_t pps_intr_conf = {
config->rx_pin,
UART_PIN_NO_CHANGE,
UART_PIN_NO_CHANGE));
// Re-configure PPS for Interrupts (Posedge)
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_POSEDGE, .intr_type = GPIO_INTR_POSEDGE,
.mode = GPIO_MODE_INPUT, .mode = GPIO_MODE_INPUT,
.pin_bit_mask = (1ULL << config->pps_pin), .pin_bit_mask = (1ULL << config->pps_pin),
.pull_up_en = GPIO_PULLUP_ENABLE, .pull_up_en = GPIO_PULLUP_DISABLE, // High-Z usually best for driven PPS
.pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE,
}; };
ESP_ERROR_CHECK(gpio_config(&io_conf)); ESP_ERROR_CHECK(gpio_config(&pps_intr_conf));
// Install ISR service if not already done by other components
// Note: If you have other components using GPIO ISRs, ensure flags match or install is called only once.
gpio_install_isr_service(0); gpio_install_isr_service(0);
ESP_ERROR_CHECK(gpio_isr_handler_add(config->pps_pin, pps_isr_handler, NULL)); ESP_ERROR_CHECK(gpio_isr_handler_add(config->pps_pin, pps_isr_handler, NULL));
// 5. Start Processor Task
xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL); xTaskCreate(gps_task, "gps_task", 4096, NULL, 5, NULL);
ESP_LOGI(TAG, "GPS sync initialized (UART=%d, RX=%d, TX=%d, PPS=%d)",
config->uart_port, config->rx_pin, config->tx_pin, config->pps_pin);
} }
gps_timestamp_t gps_get_timestamp(void) { gps_timestamp_t gps_get_timestamp(void) {
gps_timestamp_t ts; gps_timestamp_t ts;
// Capture raw monotonic time
clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts); clock_gettime(CLOCK_MONOTONIC, &ts.mono_ts);
xSemaphoreTake(sync_mutex, portMAX_DELAY);
// Calculate microseconds
ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL + ts.mono_ts.tv_nsec / 1000; ts.monotonic_us = (int64_t)ts.mono_ts.tv_sec * 1000000LL + ts.mono_ts.tv_nsec / 1000;
ts.monotonic_ms = ts.monotonic_us / 1000; ts.monotonic_ms = ts.monotonic_us / 1000;
// Apply Offset safely
xSemaphoreTake(sync_mutex, portMAX_DELAY);
ts.gps_us = ts.monotonic_us + monotonic_offset_us; ts.gps_us = ts.monotonic_us + monotonic_offset_us;
ts.gps_ms = ts.gps_us / 1000;
ts.synced = gps_has_fix; ts.synced = gps_has_fix;
xSemaphoreGive(sync_mutex); xSemaphoreGive(sync_mutex);
ts.gps_ms = ts.gps_us / 1000;
return ts; return ts;
} }
int64_t gps_get_monotonic_ms(void) { int64_t gps_get_monotonic_ms(void) {
struct timespec ts; return esp_timer_get_time() / 1000;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec * 1000LL + ts.tv_nsec / 1000000;
} }
bool gps_is_synced(void) { bool gps_is_synced(void) {
@ -253,6 +308,7 @@ int gps_log_vprintf(const char *fmt, va_list args) {
if (use_gps_for_logs) { if (use_gps_for_logs) {
char *timestamp_start = NULL; char *timestamp_start = NULL;
// Find ESP log timestamp format "(1234)"
for (int i = 0; buffer[i] != '\0' && i < sizeof(buffer) - 20; i++) { for (int i = 0; buffer[i] != '\0' && i < sizeof(buffer) - 20; i++) {
if ((buffer[i] == 'I' || buffer[i] == 'W' || buffer[i] == 'E' || if ((buffer[i] == 'I' || buffer[i] == 'W' || buffer[i] == 'E' ||
buffer[i] == 'D' || buffer[i] == 'V') && buffer[i] == 'D' || buffer[i] == 'V') &&
@ -269,24 +325,35 @@ int gps_log_vprintf(const char *fmt, va_list args) {
if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) { if (sscanf(timestamp_start, "%lu", &monotonic_log_ms) == 1) {
char reformatted[512]; char reformatted[512];
size_t prefix_len = timestamp_start - buffer; size_t prefix_len = timestamp_start - buffer;
// Copy prefix "I "
if (prefix_len > sizeof(reformatted)) prefix_len = sizeof(reformatted);
memcpy(reformatted, buffer, prefix_len); memcpy(reformatted, buffer, prefix_len);
int decimal_len = 0; int decimal_len = 0;
if (gps_has_fix) { if (gps_has_fix) {
int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000; int64_t log_mono_us = (int64_t)monotonic_log_ms * 1000;
int64_t log_gps_us = log_mono_us + monotonic_offset_us; int64_t log_gps_us = log_mono_us + monotonic_offset_us;
// Split into seconds and fractional ms
uint64_t gps_sec = log_gps_us / 1000000; uint64_t gps_sec = log_gps_us / 1000000;
uint32_t gps_ms = (log_gps_us % 1000000) / 1000; uint32_t gps_ms = (log_gps_us % 1000000) / 1000;
// Overwrite timestamp with GPS time e.g., "+1703000000.123"
decimal_len = snprintf(reformatted + prefix_len, decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len, sizeof(reformatted) - prefix_len,
"+%" PRIu64 ".%03lu", gps_sec, gps_ms); "+%" PRIu64 ".%03lu", gps_sec, gps_ms);
} else { } else {
// Fallback: Keep monotonic but mark as unsynced
uint32_t sec = monotonic_log_ms / 1000; uint32_t sec = monotonic_log_ms / 1000;
uint32_t ms = monotonic_log_ms % 1000; uint32_t ms = monotonic_log_ms % 1000;
decimal_len = snprintf(reformatted + prefix_len, decimal_len = snprintf(reformatted + prefix_len,
sizeof(reformatted) - prefix_len, sizeof(reformatted) - prefix_len,
"*%lu.%03lu", sec, ms); "*%lu.%03lu", (unsigned long)sec, (unsigned long)ms);
} }
// Copy remainder of message
strcpy(reformatted + prefix_len + decimal_len, timestamp_end); strcpy(reformatted + prefix_len + decimal_len, timestamp_end);
return printf("%s", reformatted); return printf("%s", reformatted);
} }

View File

@ -23,6 +23,20 @@
static const char *TAG = "iperf"; static const char *TAG = "iperf";
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PPS "iperf_pps"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
// --- Global Config State ---
static iperf_cfg_t s_staging_cfg = {0}; // The "Running" Config
static bool s_staging_initialized = false;
static EventGroupHandle_t s_iperf_event_group = NULL; static EventGroupHandle_t s_iperf_event_group = NULL;
#define IPERF_IP_READY_BIT (1 << 0) #define IPERF_IP_READY_BIT (1 << 0)
#define IPERF_STOP_REQ_BIT (1 << 1) #define IPERF_STOP_REQ_BIT (1 << 1)
@ -30,6 +44,7 @@ static EventGroupHandle_t s_iperf_event_group = NULL;
#define RATE_CHECK_INTERVAL_US 500000 #define RATE_CHECK_INTERVAL_US 500000
#define MIN_PACING_INTERVAL_US 100 #define MIN_PACING_INTERVAL_US 100
// --- Runtime Control ---
typedef struct { typedef struct {
iperf_cfg_t cfg; iperf_cfg_t cfg;
bool finish; bool finish;
@ -37,20 +52,17 @@ typedef struct {
uint8_t *buffer; uint8_t *buffer;
} iperf_ctrl_t; } iperf_ctrl_t;
static iperf_ctrl_t s_iperf_ctrl = {0}; static iperf_ctrl_t s_iperf_ctrl = {0}; // The "Active" Config (while task runs)
static TaskHandle_t s_iperf_task_handle = NULL; static TaskHandle_t s_iperf_task_handle = NULL;
static iperf_cfg_t s_next_cfg; // Holding area for the new config static bool s_reload_req = false;
static bool s_reload_req = false; // Flag to trigger internal restart
// Global Stats Tracker // Global Stats Tracker
static iperf_stats_t s_stats = {0}; static iperf_stats_t s_stats = {0};
// --- Session Persistence Variables ---
static int64_t s_session_start_time = 0; static int64_t s_session_start_time = 0;
static int64_t s_session_end_time = 0; static int64_t s_session_end_time = 0;
static uint64_t s_session_packets = 0; static uint64_t s_session_packets = 0;
// --- State Duration & Edge Counters --- // --- FSM State & Stats ---
typedef enum { typedef enum {
IPERF_STATE_IDLE = 0, IPERF_STATE_IDLE = 0,
IPERF_STATE_TX, IPERF_STATE_TX,
@ -58,6 +70,8 @@ typedef enum {
IPERF_STATE_TX_STALLED IPERF_STATE_TX_STALLED
} iperf_fsm_state_t; } iperf_fsm_state_t;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static int64_t s_time_tx_us = 0; static int64_t s_time_tx_us = 0;
static int64_t s_time_slow_us = 0; static int64_t s_time_slow_us = 0;
static int64_t s_time_stalled_us = 0; static int64_t s_time_stalled_us = 0;
@ -66,35 +80,207 @@ static uint32_t s_edge_tx = 0;
static uint32_t s_edge_slow = 0; static uint32_t s_edge_slow = 0;
static uint32_t s_edge_stalled = 0; static uint32_t s_edge_stalled = 0;
static iperf_fsm_state_t s_current_fsm_state = IPERF_STATE_IDLE;
static esp_event_handler_instance_t instance_any_id; static esp_event_handler_instance_t instance_any_id;
static esp_event_handler_instance_t instance_got_ip; static esp_event_handler_instance_t instance_got_ip;
// --- Helper: Pattern Initialization --- // --- Packet Structures ---
// Fills buffer with 0-9 cyclic ASCII pattern (matches iperf2 "pattern" function) typedef struct {
static void iperf_pattern(uint8_t *buf, uint32_t len) { int32_t id;
for (uint32_t i = 0; i < len; i++) { uint32_t tv_sec;
buf[i] = (i % 10) + '0'; uint32_t tv_usec;
int32_t id2;
} udp_datagram;
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- Helper: Defaults ---
static void set_defaults(iperf_cfg_t *cfg) {
memset(cfg, 0, sizeof(iperf_cfg_t));
cfg->flag = IPERF_FLAG_CLIENT | IPERF_FLAG_UDP;
cfg->dip = 0; // 0.0.0.0
cfg->dport = IPERF_DEFAULT_PORT;
cfg->time = 0; // Infinite
cfg->target_pps = 100; // Default 100 PPS
cfg->burst_count = 1;
cfg->send_len = IPERF_UDP_TX_LEN;
}
// --- Parameter Management (Init / Load / Save / Get / Set) ---
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
// Clear NVS
void iperf_param_clear(void) {
nvs_handle_t h;
if (nvs_open("storage", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, NVS_KEY_IPERF_PPS);
nvs_erase_key(h, NVS_KEY_IPERF_BURST);
nvs_erase_key(h, NVS_KEY_IPERF_LEN);
nvs_erase_key(h, NVS_KEY_IPERF_PORT);
nvs_erase_key(h, NVS_KEY_IPERF_DST_IP);
nvs_commit(h);
nvs_close(h);
ESP_LOGI(TAG, "iPerf NVS configuration cleared.");
}
// Reset RAM to defaults to match the "Empty" NVS state
set_defaults(&s_staging_cfg);
}
void iperf_param_init(void) {
if (s_staging_initialized) return;
set_defaults(&s_staging_cfg);
// Load from NVS
nvs_handle_t h;
if (nvs_open("storage", NVS_READONLY, &h) == ESP_OK) {
ESP_LOGI(TAG, "Loading saved config from NVS...");
uint32_t val;
// Direct Load: No conversion needed
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK && val > 0) {
s_staging_cfg.target_pps = val;
}
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) s_staging_cfg.burst_count = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) s_staging_cfg.send_len = val;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) s_staging_cfg.dport = (uint16_t)val;
size_t req;
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
s_staging_cfg.dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(h);
} else {
ESP_LOGI(TAG, "No saved config found, using defaults.");
}
s_staging_initialized = true;
}
void iperf_param_get(iperf_cfg_t *out_cfg) {
if (!s_staging_initialized) iperf_param_init();
*out_cfg = s_staging_cfg;
}
void iperf_param_set(const iperf_cfg_t *new_cfg) {
if (!s_staging_initialized) iperf_param_init();
// Update Staging
s_staging_cfg = *new_cfg;
// Hot Reload Logic
if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Hot reloading parameters...");
s_iperf_ctrl.cfg = s_staging_cfg;
s_reload_req = true;
// Stop current internal loop to pick up new config
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} }
} }
// --- Helper: Generate Client Header --- // --- Dirty Check ---
// Modified to set all zeros except HEADER_SEQNO64B bool iperf_param_is_unsaved(void) {
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) { if (!s_staging_initialized) return false;
// Zero out the entire structure
memset(hdr, 0, sizeof(client_hdr_v1));
// Set only the SEQNO64B flag (Server will detect 64-bit seqno in UDP header) nvs_handle_t h;
hdr->flags = htonl(HEADER_SEQNO64B); if (nvs_open("storage", NVS_READONLY, &h) != ESP_OK) return false;
uint32_t val;
bool match = true;
// Direct Compare: No conversion needed
uint32_t saved_pps = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PPS, &val) == ESP_OK) saved_pps = val;
if (s_staging_cfg.target_pps != saved_pps) match = false;
// Standard Fields
if (nvs_get_u32(h, NVS_KEY_IPERF_BURST, &val) == ESP_OK) { if (s_staging_cfg.burst_count != val) match = false; }
if (nvs_get_u32(h, NVS_KEY_IPERF_LEN, &val) == ESP_OK) { if (s_staging_cfg.send_len != val) match = false; }
uint32_t saved_port = 0;
if (nvs_get_u32(h, NVS_KEY_IPERF_PORT, &val) == ESP_OK) saved_port = val;
if (s_staging_cfg.dport != (uint16_t)saved_port) match = false;
// IP String
size_t req;
char staging_ip[32];
struct in_addr daddr; daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, staging_ip, sizeof(staging_ip));
if (nvs_get_str(h, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *saved_ip = malloc(req);
if (saved_ip) {
nvs_get_str(h, NVS_KEY_IPERF_DST_IP, saved_ip, &req);
trim_whitespace(saved_ip);
if (strcmp(saved_ip, staging_ip) != 0) match = false;
free(saved_ip);
}
} else {
if (s_staging_cfg.dip != 0) match = false;
}
nvs_close(h);
return !match;
} }
// ... [Existing Status Reporting & Event Handler Code] ... // --- Save with Check ---
esp_err_t iperf_param_save(bool *out_changed) {
if (out_changed) *out_changed = false;
if (!iperf_param_is_unsaved()) {
ESP_LOGI(TAG, "Config matches NVS. No write needed.");
return ESP_OK;
}
nvs_handle_t h;
esp_err_t err = nvs_open("storage", NVS_READWRITE, &h);
if (err != ESP_OK) return err;
// Direct Save: No conversion needed
nvs_set_u32(h, NVS_KEY_IPERF_PPS, s_staging_cfg.target_pps);
nvs_set_u32(h, NVS_KEY_IPERF_BURST, s_staging_cfg.burst_count);
nvs_set_u32(h, NVS_KEY_IPERF_LEN, s_staging_cfg.send_len);
nvs_set_u32(h, NVS_KEY_IPERF_PORT, (uint32_t)s_staging_cfg.dport);
char ip_str[32];
struct in_addr daddr;
daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, ip_str, sizeof(ip_str));
nvs_set_str(h, NVS_KEY_IPERF_DST_IP, ip_str);
err = nvs_commit(h);
if (err == ESP_OK && out_changed) *out_changed = true;
nvs_close(h);
return err;
}
// --- Status & Helpers ---
void iperf_get_stats(iperf_stats_t *stats) { void iperf_get_stats(iperf_stats_t *stats) {
if (stats) { if (stats) {
s_stats.config_pps = (s_iperf_ctrl.cfg.pacing_period_us > 0) ? s_stats.config_pps = s_iperf_ctrl.cfg.target_pps;
(1000000 / s_iperf_ctrl.cfg.pacing_period_us) : 0;
*stats = s_stats; *stats = s_stats;
} }
} }
@ -102,29 +288,24 @@ void iperf_get_stats(iperf_stats_t *stats) {
void iperf_print_status(void) { void iperf_print_status(void) {
iperf_get_stats(&s_stats); iperf_get_stats(&s_stats);
// 1. Get Source IP
char src_ip[32] = "0.0.0.0";
esp_netif_t *netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
if (netif) {
esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK) {
inet_ntop(AF_INET, &ip_info.ip, src_ip, sizeof(src_ip));
}
}
// 2. Get Destination IP
char dst_ip[32] = "0.0.0.0"; char dst_ip[32] = "0.0.0.0";
struct in_addr daddr; struct in_addr daddr;
daddr.s_addr = s_iperf_ctrl.cfg.dip;
// Show active config if running, otherwise staging
if (s_stats.running) daddr.s_addr = s_iperf_ctrl.cfg.dip;
else daddr.s_addr = s_staging_cfg.dip;
inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip)); inet_ntop(AF_INET, &daddr, dst_ip, sizeof(dst_ip));
float err = 0.0f; // Calculate Percentages
if (s_stats.running && s_stats.config_pps > 0) { double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us);
int32_t diff = (int32_t)s_stats.config_pps - (int32_t)s_stats.actual_pps; if (total_us < 1.0) total_us = 1.0;
err = (float)diff * 100.0f / (float)s_stats.config_pps;
}
// 3. Compute Session Bandwidth double pct_tx = ((double)s_time_tx_us / total_us) * 100.0;
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Bandwidth Calculation
float avg_bw_mbps = 0.0f; float avg_bw_mbps = 0.0f;
if (s_session_start_time > 0) { if (s_session_start_time > 0) {
int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time; int64_t end_t = (s_stats.running) ? esp_timer_get_time() : s_session_end_time;
@ -137,26 +318,32 @@ void iperf_print_status(void) {
} }
} }
// 4. Calculate State Percentages printf("IPERF: Dest=%s:%u, Pkts=%llu, BW=%.2f Mbps, Running=%d\n",
double total_us = (double)(s_time_tx_us + s_time_slow_us + s_time_stalled_us); dst_ip,
if (total_us < 1.0) total_us = 1.0; s_stats.running ? s_iperf_ctrl.cfg.dport : s_staging_cfg.dport,
s_session_packets,
avg_bw_mbps,
s_stats.running);
double pct_tx = ((double)s_time_tx_us / total_us) * 100.0; printf("STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
double pct_slow = ((double)s_time_slow_us / total_us) * 100.0;
double pct_stalled = ((double)s_time_stalled_us / total_us) * 100.0;
// Standard Stats
printf("IPERF_STATUS: Src=%s, Dst=%s, Running=%d, Config=%" PRIu32 ", Actual=%" PRIu32 ", Err=%.1f%%, Pkts=%" PRIu64 ", AvgBW=%.2f Mbps\n",
src_ip, dst_ip, s_stats.running, s_stats.config_pps, s_stats.actual_pps, err, s_session_packets, avg_bw_mbps);
// New Format: Time + Percentage + Edges
printf("IPERF_STATES: TX=%.2fs/%.1f%% (%lu), SLOW=%.2fs/%.1f%% (%lu), STALLED=%.2fs/%.1f%% (%lu)\n",
(double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx, (double)s_time_tx_us/1000000.0, pct_tx, (unsigned long)s_edge_tx,
(double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow, (double)s_time_slow_us/1000000.0, pct_slow, (unsigned long)s_edge_slow,
(double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled); (double)s_time_stalled_us/1000000.0, pct_stalled, (unsigned long)s_edge_stalled);
} }
// --- Network Events --- // --- Core Logic ---
static void iperf_pattern(uint8_t *buf, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
buf[i] = (i % 10) + '0';
}
}
static void iperf_generate_client_hdr(iperf_cfg_t *cfg, client_hdr_v1 *hdr) {
memset(hdr, 0, sizeof(client_hdr_v1));
hdr->flags = htonl(HEADER_SEQNO64B);
}
static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { static void iperf_network_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
if (s_iperf_event_group == NULL) return; if (s_iperf_event_group == NULL) return;
if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) { if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
@ -175,7 +362,7 @@ static bool iperf_wait_for_ip(void) {
if (netif) { if (netif) {
esp_netif_ip_info_t ip_info; esp_netif_ip_info_t ip_info;
if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) { if (esp_netif_get_ip_info(netif, &ip_info) == ESP_OK && ip_info.ip.addr != 0) {
xEventGroupSetBits(s_iperf_event_group, IPERF_IP_READY_BIT); return true;
} }
} }
@ -188,95 +375,21 @@ static bool iperf_wait_for_ip(void) {
esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id); esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id);
esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip); esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip);
if (bits & IPERF_STOP_REQ_BIT) { if (bits & IPERF_STOP_REQ_BIT) return false;
ESP_LOGW(TAG, "Stop requested while waiting for IP");
return false;
}
ESP_LOGI(TAG, "IP Ready. Starting traffic.");
return true; return true;
} }
static void trim_whitespace(char *str) {
char *end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
*(end+1) = 0;
}
static void iperf_read_nvs_config(iperf_cfg_t *cfg) {
nvs_handle_t my_handle;
if (nvs_open("storage", NVS_READONLY, &my_handle) != ESP_OK) return;
uint32_t val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PERIOD, &val) == ESP_OK) cfg->pacing_period_us = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_BURST, &val) == ESP_OK) cfg->burst_count = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_LEN, &val) == ESP_OK) cfg->send_len = val;
if (nvs_get_u32(my_handle, NVS_KEY_IPERF_PORT, &val) == ESP_OK) cfg->dport = (uint16_t)val;
size_t req;
char buf[16];
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_ROLE, buf, &req) == ESP_OK) {
if (strcmp(buf, "SERVER") == 0) cfg->flag |= IPERF_FLAG_SERVER;
else cfg->flag |= IPERF_FLAG_CLIENT;
}
req = sizeof(buf);
if (nvs_get_str(my_handle, NVS_KEY_IPERF_PROTO, buf, &req) == ESP_OK) {
if (strcmp(buf, "TCP") == 0) cfg->flag |= IPERF_FLAG_TCP;
else cfg->flag |= IPERF_FLAG_UDP;
}
if (nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, NULL, &req) == ESP_OK) {
char *ip_str = malloc(req);
if (ip_str) {
nvs_get_str(my_handle, NVS_KEY_IPERF_DST_IP, ip_str, &req);
trim_whitespace(ip_str);
cfg->dip = inet_addr(ip_str);
free(ip_str);
}
}
nvs_close(my_handle);
}
void iperf_set_pps(uint32_t pps) {
if (pps == 0) pps = 1;
uint32_t period_us = 1000000 / pps;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
if (s_iperf_task_handle != NULL) {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
printf("IPERF_PPS_UPDATED: %" PRIu32 "\n", pps);
} else {
s_iperf_ctrl.cfg.pacing_period_us = period_us;
}
}
uint32_t iperf_get_pps(void) {
if (s_iperf_ctrl.cfg.pacing_period_us == 0) return 0;
return 1000000 / s_iperf_ctrl.cfg.pacing_period_us;
}
static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) { static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
if (!iperf_wait_for_ip()) { if (!iperf_wait_for_ip()) return ESP_OK;
printf("IPERF_STOPPED\n");
return ESP_OK;
}
struct sockaddr_in addr; struct sockaddr_in addr;
addr.sin_family = AF_INET; addr.sin_family = AF_INET;
addr.sin_port = htons(ctrl->cfg.dport > 0 ? ctrl->cfg.dport : 5001); addr.sin_port = htons(ctrl->cfg.dport);
addr.sin_addr.s_addr = ctrl->cfg.dip; addr.sin_addr.s_addr = ctrl->cfg.dip;
char ip_str[32];
inet_ntop(AF_INET, &addr.sin_addr, ip_str, sizeof(ip_str));
ESP_LOGI(TAG, "Client sending to %s:%d", ip_str, ntohs(addr.sin_port));
int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) { if (sockfd < 0) {
status_led_set_state(LED_STATE_FAILED); ESP_LOGE(TAG, "Socket failed: %d", errno);
ESP_LOGE(TAG, "Socket creation failed: %d", errno);
printf("IPERF_STOPPED\n");
return ESP_FAIL; return ESP_FAIL;
} }
@ -288,7 +401,6 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_stats.running = true; s_stats.running = true;
s_session_start_time = esp_timer_get_time(); s_session_start_time = esp_timer_get_time();
s_session_end_time = 0;
s_session_packets = 0; s_session_packets = 0;
// Reset FSM // Reset FSM
@ -296,22 +408,33 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0; s_edge_tx = 0; s_edge_slow = 0; s_edge_stalled = 0;
s_current_fsm_state = IPERF_STATE_IDLE; s_current_fsm_state = IPERF_STATE_IDLE;
printf("IPERF_STARTED\n"); ESP_LOGI(TAG, "UDP Started. Target: %s", inet_ntoa(addr.sin_addr));
int64_t next_send_time = esp_timer_get_time(); int64_t next_send_time = esp_timer_get_time();
int64_t end_time = (ctrl->cfg.time == 0) ? INT64_MAX : esp_timer_get_time() + (int64_t)ctrl->cfg.time * 1000000LL;
int64_t last_rate_check = esp_timer_get_time(); int64_t last_rate_check = esp_timer_get_time();
uint32_t packets_since_check = 0; uint32_t packets_since_check = 0;
int64_t packet_id = 0; int64_t packet_id = 0;
struct timespec ts; struct timespec ts;
while (!ctrl->finish && esp_timer_get_time() < end_time) { // Calculate period based on PPS (Target Period)
uint32_t period_us = (ctrl->cfg.target_pps > 0) ? (1000000 / ctrl->cfg.target_pps) : 10000;
if (period_us < MIN_PACING_INTERVAL_US) period_us = MIN_PACING_INTERVAL_US;
while (!ctrl->finish && !s_reload_req) {
int64_t now = esp_timer_get_time(); int64_t now = esp_timer_get_time();
int64_t wait = next_send_time - now; int64_t wait = next_send_time - now;
if (wait > 2000) vTaskDelay(pdMS_TO_TICKS(wait / 1000)); // 1. Sleep if gap is large
else while (esp_timer_get_time() < next_send_time) taskYIELD(); if (wait > 2000) {
vTaskDelay(pdMS_TO_TICKS(wait / 1000));
}
// 2. Spin until exact time (Strict Monotonic enforcement)
while (esp_timer_get_time() < next_send_time) {
taskYIELD();
}
if (xEventGroupGetBits(s_iperf_event_group) & IPERF_STOP_REQ_BIT) break;
for (int k = 0; k < ctrl->cfg.burst_count; k++) { for (int k = 0; k < ctrl->cfg.burst_count; k++) {
int64_t current_id = packet_id++; int64_t current_id = packet_id++;
@ -323,32 +446,20 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec); udp_hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000); udp_hdr->tv_usec = htonl(ts.tv_nsec / 1000);
int sent = sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)); if (sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr)) > 0) {
if (sent > 0) {
packets_since_check++;
s_session_packets++; s_session_packets++;
} else { packets_since_check++;
// --- ROBUST FIX: Never Abort ---
// If send fails (buffer full, routing issue, etc.), we just yield and retry next loop.
// We do NOT goto exit.
if (errno != 12) {
// Log rarely to avoid spamming serial
if ((packet_id % 100) == 0) {
ESP_LOGW(TAG, "Send error: %d (Ignored)", errno);
}
}
vTaskDelay(pdMS_TO_TICKS(10));
} }
} }
// FSM STATS LOGIC
now = esp_timer_get_time(); now = esp_timer_get_time();
if (now - last_rate_check > RATE_CHECK_INTERVAL_US) { if (now - last_rate_check > RATE_CHECK_INTERVAL_US) {
uint32_t interval_us = (uint32_t)(now - last_rate_check); uint32_t interval_us = (uint32_t)(now - last_rate_check);
if (interval_us > 0) { if (interval_us > 0) {
s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us); s_stats.actual_pps = (uint32_t)((uint64_t)packets_since_check * 1000000 / interval_us);
uint32_t config_pps = iperf_get_pps(); uint32_t threshold = (ctrl->cfg.target_pps * 3) / 4;
uint32_t threshold = (config_pps * 3) / 4;
iperf_fsm_state_t next_state; iperf_fsm_state_t next_state;
if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED; if (s_stats.actual_pps == 0) next_state = IPERF_STATE_TX_STALLED;
else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX; else if (s_stats.actual_pps >= threshold) next_state = IPERF_STATE_TX;
@ -360,6 +471,7 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break; case IPERF_STATE_TX_STALLED: s_time_stalled_us += interval_us; break;
default: break; default: break;
} }
if (next_state != s_current_fsm_state) { if (next_state != s_current_fsm_state) {
switch (next_state) { switch (next_state) {
case IPERF_STATE_TX: s_edge_tx++; break; case IPERF_STATE_TX: s_edge_tx++; break;
@ -369,96 +481,73 @@ static esp_err_t iperf_start_udp_client(iperf_ctrl_t *ctrl) {
} }
s_current_fsm_state = next_state; s_current_fsm_state = next_state;
} }
led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW; led_state_t led_target = (s_current_fsm_state == IPERF_STATE_TX) ? LED_STATE_TRANSMITTING : LED_STATE_TRANSMITTING_SLOW;
if (status_led_get_state() != led_target) status_led_set_state(led_target); if (status_led_get_state() != led_target) status_led_set_state(led_target);
} }
last_rate_check = now; last_rate_check = now;
packets_since_check = 0; packets_since_check = 0;
} }
next_send_time += ctrl->cfg.pacing_period_us;
}
udp_datagram *hdr = (udp_datagram *)ctrl->buffer; // MONOTONIC UPDATE
int64_t final_id = -packet_id; next_send_time += period_us;
hdr->id = htonl((uint32_t)(final_id & 0xFFFFFFFF));
hdr->id2 = htonl((uint32_t)((final_id >> 32) & 0xFFFFFFFF));
clock_gettime(CLOCK_REALTIME, &ts);
hdr->tv_sec = htonl((uint32_t)ts.tv_sec);
hdr->tv_usec = htonl(ts.tv_nsec / 1000);
for(int i=0; i<10; i++) {
sendto(sockfd, ctrl->buffer, ctrl->cfg.send_len, 0, (struct sockaddr *)&addr, sizeof(addr));
vTaskDelay(pdMS_TO_TICKS(2));
} }
ESP_LOGI(TAG, "Sent termination packets (ID: %" PRId64 ")", final_id);
close(sockfd); close(sockfd);
s_stats.running = false; s_stats.running = false;
s_session_end_time = esp_timer_get_time(); s_session_end_time = esp_timer_get_time();
s_stats.actual_pps = 0; status_led_set_state(LED_STATE_CONNECTED);
status_led_set_state(LED_STATE_CONNECTED); // <--- This is your "Solid Green"
printf("IPERF_STOPPED\n");
return ESP_OK; return ESP_OK;
} }
static void iperf_task(void *arg) { static void iperf_task(void *arg) {
iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg; iperf_ctrl_t *ctrl = (iperf_ctrl_t *)arg;
do { while (1) {
s_reload_req = false; s_reload_req = false;
ctrl->finish = false; ctrl->finish = false;
xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); xEventGroupClearBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
if (ctrl->cfg.flag & IPERF_FLAG_UDP && ctrl->cfg.flag & IPERF_FLAG_CLIENT) {
iperf_start_udp_client(ctrl); iperf_start_udp_client(ctrl);
}
if (s_reload_req) { if (s_reload_req) {
ESP_LOGI(TAG, "Hot reloading iperf task with new config..."); ESP_LOGI(TAG, "Task reloading config...");
ctrl->cfg = s_next_cfg; if (ctrl->buffer_len < ctrl->cfg.send_len + 128) {
vTaskDelay(pdMS_TO_TICKS(100)); free(ctrl->buffer);
ctrl->buffer_len = ctrl->cfg.send_len + 128;
ctrl->buffer = calloc(1, ctrl->buffer_len);
iperf_pattern(ctrl->buffer, ctrl->buffer_len);
}
} else {
break;
}
} }
} while (s_reload_req);
free(ctrl->buffer); free(ctrl->buffer);
s_iperf_task_handle = NULL; s_iperf_task_handle = NULL;
vTaskDelete(NULL); vTaskDelete(NULL);
} }
void iperf_start(iperf_cfg_t *cfg) { void iperf_start(void) {
iperf_cfg_t new_cfg = *cfg; if (!s_staging_initialized) iperf_param_init();
iperf_read_nvs_config(&new_cfg);
if (new_cfg.send_len == 0) new_cfg.send_len = 1470;
if (new_cfg.pacing_period_us == 0) new_cfg.pacing_period_us = 10000;
if (new_cfg.burst_count == 0) new_cfg.burst_count = 1;
if (s_iperf_task_handle) { if (s_iperf_task_handle) {
ESP_LOGI(TAG, "Task running. Staging hot reload."); ESP_LOGW(TAG, "Already running. Use 'set' to update parameters.");
s_next_cfg = new_cfg;
s_reload_req = true;
iperf_stop();
printf("IPERF_RELOADING\n");
return; return;
} }
s_iperf_ctrl.cfg = new_cfg; // Copy Staging -> Active
s_iperf_ctrl.cfg = s_staging_cfg;
s_iperf_ctrl.finish = false; s_iperf_ctrl.finish = false;
if (s_iperf_ctrl.buffer == NULL) { // Allocate Buffer
s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128; s_iperf_ctrl.buffer_len = s_iperf_ctrl.cfg.send_len + 128;
s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len); s_iperf_ctrl.buffer = calloc(1, s_iperf_ctrl.buffer_len);
}
// Initialize Buffer Pattern
if (s_iperf_ctrl.buffer) { if (s_iperf_ctrl.buffer) {
iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len); iperf_pattern(s_iperf_ctrl.buffer, s_iperf_ctrl.buffer_len);
} }
if (s_iperf_event_group == NULL) { if (s_iperf_event_group == NULL) s_iperf_event_group = xEventGroupCreate();
s_iperf_event_group = xEventGroupCreate();
}
xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle); xTaskCreate(iperf_task, "iperf", 4096, &s_iperf_ctrl, 5, &s_iperf_task_handle);
} }
@ -467,7 +556,5 @@ void iperf_stop(void) {
if (s_iperf_task_handle) { if (s_iperf_task_handle) {
s_iperf_ctrl.finish = true; s_iperf_ctrl.finish = true;
if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT); if (s_iperf_event_group) xEventGroupSetBits(s_iperf_event_group, IPERF_STOP_REQ_BIT);
} else {
printf("IPERF_STOPPED\n");
} }
} }

View File

@ -11,7 +11,7 @@
#define IPERF_FLAG_TCP (1 << 2) #define IPERF_FLAG_TCP (1 << 2)
#define IPERF_FLAG_UDP (1 << 3) #define IPERF_FLAG_UDP (1 << 3)
// --- Standard Iperf2 Header Flags (from payloads.h) --- // --- Standard Iperf2 Header Flags ---
#define HEADER_VERSION1 0x80000000 #define HEADER_VERSION1 0x80000000
#define HEADER_EXTEND 0x40000000 #define HEADER_EXTEND 0x40000000
#define HEADER_UDPTESTS 0x20000000 #define HEADER_UDPTESTS 0x20000000
@ -21,32 +21,18 @@
#define IPERF_DEFAULT_PORT 5001 #define IPERF_DEFAULT_PORT 5001
#define IPERF_DEFAULT_INTERVAL 3 #define IPERF_DEFAULT_INTERVAL 3
#define IPERF_DEFAULT_TIME 30 #define IPERF_DEFAULT_TIME 30
#define IPERF_TRAFFIC_TASK_PRIORITY 4 #define IPERF_UDP_TX_LEN 1470
#define IPERF_REPORT_TASK_PRIORITY 5
#define IPERF_UDP_TX_LEN (1470)
// --- NVS Keys ---
#define NVS_KEY_IPERF_ENABLE "iperf_enabled"
#define NVS_KEY_IPERF_PERIOD "iperf_period"
#define NVS_KEY_IPERF_ROLE "iperf_role"
#define NVS_KEY_IPERF_DST_IP "iperf_dst_ip"
#define NVS_KEY_IPERF_PORT "iperf_port"
#define NVS_KEY_IPERF_PROTO "iperf_proto"
#define NVS_KEY_IPERF_BURST "iperf_burst"
#define NVS_KEY_IPERF_LEN "iperf_len"
typedef struct { typedef struct {
uint32_t flag; uint32_t flag;
uint32_t dip; uint32_t dip; // Destination IP
uint16_t dport; uint16_t dport; // Destination Port
uint32_t time; uint32_t time; // Duration (seconds), 0 = infinite
uint32_t pacing_period_us; uint32_t target_pps; // Packets Per Second (Replaces period)
uint32_t burst_count; uint32_t burst_count; // Packets per RTOS tick
uint32_t send_len; uint32_t send_len; // Packet payload length
} iperf_cfg_t; } iperf_cfg_t;
// --- Stats Structure ---
typedef struct { typedef struct {
bool running; bool running;
uint32_t config_pps; uint32_t config_pps;
@ -54,41 +40,29 @@ typedef struct {
float error_rate; float error_rate;
} iperf_stats_t; } iperf_stats_t;
// --- Wire Formats (Strict Layout) ---
// 1. Basic UDP Datagram Header (16 bytes)
// Corresponds to 'struct UDP_datagram' in payloads.h
typedef struct {
int32_t id; // Lower 32 bits of seqno
uint32_t tv_sec; // Seconds
uint32_t tv_usec; // Microseconds
int32_t id2; // Upper 32 bits of seqno (when HEADER_SEQNO64B is set)
} udp_datagram;
// 2. Client Header V1 (Used for First Packet Exchange)
// Corresponds to 'struct client_hdr_v1' in payloads.h
typedef struct {
int32_t flags;
int32_t numThreads;
int32_t mPort;
int32_t mBufLen;
int32_t mWinBand;
int32_t mAmount;
} client_hdr_v1;
// --- API --- // --- API ---
void iperf_init_led(led_strip_handle_t handle); // Initialization (Call this in app_main to load NVS)
void iperf_set_pps(uint32_t pps); void iperf_param_init(void);
uint32_t iperf_get_pps(void);
// Get snapshot of current stats // Parameter Management (Running Config)
void iperf_get_stats(iperf_stats_t *stats); void iperf_param_get(iperf_cfg_t *out_cfg);
void iperf_param_set(const iperf_cfg_t *new_cfg);
// Print formatted status to stdout (for CLI/Python) // Save returns true if NVS was actually updated
esp_err_t iperf_param_save(bool *out_changed);
// Check if dirty
bool iperf_param_is_unsaved(void);
// Control
void iperf_start(void); // Uses current Running Config
void iperf_stop(void);
void iperf_print_status(void); void iperf_print_status(void);
void iperf_start(iperf_cfg_t *cfg); // Utils
void iperf_stop(void); void iperf_init_led(led_strip_handle_t handle);
// Erase NVS and reset RAM defaults
void iperf_param_clear(void);
#endif #endif

View File

@ -5,6 +5,8 @@
#include "led_strip.h" #include "led_strip.h"
#include "esp_log.h" #include "esp_log.h"
static const char *TAG = "status_led";
static led_strip_handle_t s_led_strip = NULL; static led_strip_handle_t s_led_strip = NULL;
static bool s_is_rgb = false; static bool s_is_rgb = false;
static int s_gpio_pin = -1; static int s_gpio_pin = -1;
@ -15,6 +17,7 @@ static void set_color(uint8_t r, uint8_t g, uint8_t b) {
led_strip_set_pixel(s_led_strip, 0, r, g, b); led_strip_set_pixel(s_led_strip, 0, r, g, b);
led_strip_refresh(s_led_strip); led_strip_refresh(s_led_strip);
} else if (!s_is_rgb && s_gpio_pin >= 0) { } else if (!s_is_rgb && s_gpio_pin >= 0) {
// Simple LED: On if any color component is > 0
gpio_set_level(s_gpio_pin, (r+g+b) > 0); gpio_set_level(s_gpio_pin, (r+g+b) > 0);
} }
} }
@ -23,33 +26,40 @@ static void led_task(void *arg) {
int toggle = 0; int toggle = 0;
while (1) { while (1) {
switch (s_current_state) { switch (s_current_state) {
case LED_STATE_NO_CONFIG: // Yellow case LED_STATE_NO_CONFIG: // Yellow (Solid for RGB, Blink for Single)
if (s_is_rgb) { set_color(25, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000)); } if (s_is_rgb) { set_color(20, 20, 0); vTaskDelay(pdMS_TO_TICKS(1000)); }
else { set_color(1,1,1); vTaskDelay(100); set_color(0,0,0); vTaskDelay(100); } else { set_color(1,1,1); vTaskDelay(pdMS_TO_TICKS(100)); set_color(0,0,0); vTaskDelay(pdMS_TO_TICKS(100)); }
break; break;
case LED_STATE_WAITING: // Blue Blink case LED_STATE_WAITING: // Blue Blink (Searching)
set_color(0, 0, toggle ? 50 : 0); toggle = !toggle; set_color(0, 0, toggle ? 50 : 0);
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
break; break;
case LED_STATE_CONNECTED: // Green Solid case LED_STATE_CONNECTED: // Green Solid (Idle)
set_color(0, 25, 0); vTaskDelay(pdMS_TO_TICKS(1000)); set_color(0, 20, 0);
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_MONITORING: // Blue Solid case LED_STATE_MONITORING: // Blue Solid (Sniffer Mode)
set_color(0, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000)); set_color(0, 0, 50);
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_TRANSMITTING: // Fast Purple (Busy) case LED_STATE_TRANSMITTING: // Fast Purple Flash (Busy)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle; set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0);
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(50)); vTaskDelay(pdMS_TO_TICKS(50));
break; break;
case LED_STATE_TRANSMITTING_SLOW: // Slow Purple (Relaxed) case LED_STATE_TRANSMITTING_SLOW: // Slow Purple Pulse (Pacing)
set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0); toggle = !toggle; set_color(toggle ? 50 : 0, 0, toggle ? 50 : 0);
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(250)); vTaskDelay(pdMS_TO_TICKS(250));
break; break;
case LED_STATE_STALLED: // Purple Solid case LED_STATE_STALLED: // Purple Solid (Stalled)
set_color(50, 0, 50); vTaskDelay(pdMS_TO_TICKS(1000)); set_color(50, 0, 50);
vTaskDelay(pdMS_TO_TICKS(1000));
break; break;
case LED_STATE_FAILED: // Red Blink case LED_STATE_FAILED: // Red Blink (Error)
set_color(toggle ? 50 : 0, 0, 0); toggle = !toggle; set_color(toggle ? 50 : 0, 0, 0);
toggle = !toggle;
vTaskDelay(pdMS_TO_TICKS(200)); vTaskDelay(pdMS_TO_TICKS(200));
break; break;
} }
@ -59,15 +69,34 @@ static void led_task(void *arg) {
void status_led_init(int gpio_pin, bool is_rgb_strip) { void status_led_init(int gpio_pin, bool is_rgb_strip) {
s_gpio_pin = gpio_pin; s_gpio_pin = gpio_pin;
s_is_rgb = is_rgb_strip; s_is_rgb = is_rgb_strip;
ESP_LOGI(TAG, "Initializing LED on GPIO %d (RGB=%d)", gpio_pin, is_rgb_strip);
if (s_is_rgb) { if (s_is_rgb) {
led_strip_config_t s_cfg = { .strip_gpio_num = gpio_pin, .max_leds = 1 }; led_strip_config_t s_cfg = {
led_strip_rmt_config_t r_cfg = { .resolution_hz = 10 * 1000 * 1000 }; .strip_gpio_num = gpio_pin,
led_strip_new_rmt_device(&s_cfg, &r_cfg, &s_led_strip); .max_leds = 1,
.led_pixel_format = LED_PIXEL_FORMAT_GRB, // Standard for WS2812
.led_model = LED_MODEL_WS2812, // Specific model
.flags.invert_out = false,
};
led_strip_rmt_config_t r_cfg = {
.resolution_hz = 10 * 1000 * 1000, // 10MHz
.flags.with_dma = false,
};
esp_err_t ret = led_strip_new_rmt_device(&s_cfg, &r_cfg, &s_led_strip);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to create RMT LED strip: %s", esp_err_to_name(ret));
return;
}
led_strip_clear(s_led_strip); led_strip_clear(s_led_strip);
} else { } else {
gpio_reset_pin(gpio_pin); gpio_reset_pin(gpio_pin);
gpio_set_direction(gpio_pin, GPIO_MODE_OUTPUT); gpio_set_direction(gpio_pin, GPIO_MODE_OUTPUT);
gpio_set_level(gpio_pin, 0);
} }
xTaskCreate(led_task, "led_task", 2048, NULL, 5, NULL); xTaskCreate(led_task, "led_task", 2048, NULL, 5, NULL);
} }

View File

@ -52,6 +52,30 @@ void wifi_cfg_set_dhcp(bool enable) {
nvs_write_u8("dhcp", enable ? 1 : 0); nvs_write_u8("dhcp", enable ? 1 : 0);
} }
// --- Clearing ---
void wifi_cfg_clear_credentials(void) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, "ssid");
nvs_erase_key(h, "pass");
nvs_erase_key(h, "ip");
nvs_erase_key(h, "mask");
nvs_erase_key(h, "gw");
nvs_erase_key(h, "dhcp");
nvs_commit(h);
nvs_close(h);
}
}
void wifi_cfg_clear_monitor_channel(void) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) == ESP_OK) {
nvs_erase_key(h, "mon_ch");
nvs_commit(h);
nvs_close(h);
}
}
// --- Init & Load --- // --- Init & Load ---
void wifi_cfg_init(void) { void wifi_cfg_init(void) {
@ -154,3 +178,38 @@ bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch) {
nvs_close(h); nvs_close(h);
return true; return true;
} }
// --- State Checkers ---
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READONLY, &h) != ESP_OK) return true; // Assume dirty if error
uint8_t nvs_val = 0;
esp_err_t err = nvs_get_u8(h, "mon_ch", &nvs_val);
nvs_close(h);
if (err != ESP_OK) return true; // Key missing = dirty (using default)
return (nvs_val != ram_value);
}
// --- Setters ---
bool wifi_cfg_set_monitor_channel(uint8_t channel) {
nvs_handle_t h;
if (nvs_open("netcfg", NVS_READWRITE, &h) != ESP_OK) return false;
uint8_t current = 0;
// Check if write is necessary
if (nvs_get_u8(h, "mon_ch", &current) == ESP_OK) {
if (current == channel) {
nvs_close(h);
return false; // No change needed
}
}
nvs_set_u8(h, "mon_ch", channel);
nvs_commit(h);
nvs_close(h);
return true; // Write occurred
}

View File

@ -1,3 +1,4 @@
#ifndef WIFI_CFG_H #ifndef WIFI_CFG_H
#define WIFI_CFG_H #define WIFI_CFG_H
@ -11,17 +12,28 @@ extern "C" {
// --- Initialization --- // --- Initialization ---
void wifi_cfg_init(void); void wifi_cfg_init(void);
// --- Getters (Used by Controller) --- // --- Getters ---
bool wifi_cfg_apply_from_nvs(void); bool wifi_cfg_apply_from_nvs(void);
wifi_ps_type_t wifi_cfg_get_power_save_mode(void); wifi_ps_type_t wifi_cfg_get_power_save_mode(void);
bool wifi_cfg_get_bandwidth(char *buf, size_t buf_size); bool wifi_cfg_get_bandwidth(char *buf, size_t buf_size);
bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch); bool wifi_cfg_get_mode(char *mode, uint8_t *mon_ch);
// --- Setters (Used by Console) --- // --- State Checkers (Dirty Flag) ---
// Returns true if RAM value differs from NVS
bool wifi_cfg_monitor_channel_is_unsaved(uint8_t ram_value);
// --- Setters ---
void wifi_cfg_set_credentials(const char* ssid, const char* pass); void wifi_cfg_set_credentials(const char* ssid, const char* pass);
void wifi_cfg_set_static_ip(const char* ip, const char* mask, const char* gw); void wifi_cfg_set_static_ip(const char* ip, const char* mask, const char* gw);
void wifi_cfg_set_dhcp(bool enable); void wifi_cfg_set_dhcp(bool enable);
// Returns true if NVS was actually updated, false if values were identical
bool wifi_cfg_set_monitor_channel(uint8_t channel);
// --- Clearing ---
void wifi_cfg_clear_credentials(void);
void wifi_cfg_clear_monitor_channel(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -1,4 +1,4 @@
idf_component_register(SRCS "wifi_controller.c" idf_component_register(SRCS "wifi_controller.c"
INCLUDE_DIRS "." INCLUDE_DIRS "."
REQUIRES esp_wifi freertos REQUIRES esp_wifi freertos
PRIV_REQUIRES csi_manager iperf status_led wifi_monitor gps_sync log esp_netif) PRIV_REQUIRES csi_manager iperf status_led wifi_monitor wifi_cfg gps_sync log esp_netif)

View File

@ -3,7 +3,9 @@
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_wifi.h" #include "esp_wifi.h"
#include "esp_event.h" // Added
#include "inttypes.h" #include "inttypes.h"
#include "wifi_cfg.h"
// Dependencies // Dependencies
#include "iperf.h" #include "iperf.h"
@ -11,7 +13,6 @@
#include "wifi_monitor.h" #include "wifi_monitor.h"
#include "gps_sync.h" #include "gps_sync.h"
// 1. GUARDED INCLUDE
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_manager.h" #include "csi_manager.h"
#endif #endif
@ -20,33 +21,35 @@ static const char *TAG = "WIFI_CTL";
static wifi_ctl_mode_t s_current_mode = WIFI_CTL_MODE_STA; static wifi_ctl_mode_t s_current_mode = WIFI_CTL_MODE_STA;
static uint8_t s_monitor_channel = 6; static uint8_t s_monitor_channel = 6;
static uint8_t s_monitor_channel_staging = 6;
static bool s_monitor_enabled = false; static bool s_monitor_enabled = false;
static uint32_t s_monitor_frame_count = 0; static uint32_t s_monitor_frame_count = 0;
static TaskHandle_t s_monitor_stats_task_handle = NULL; static TaskHandle_t s_monitor_stats_task_handle = NULL;
// --- Helper: Log Collapse Events --- // --- Event Handler ---
static void log_collapse_event(float nav_duration_us, int rssi, int retry) { static void wifi_event_handler(void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
gps_timestamp_t ts = gps_get_timestamp(); if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
// CSV Format: COLLAPSE,MonoMS,GpsMS,Synced,Duration,RSSI,Retry ESP_LOGI(TAG, "Got IP -> LED Connected");
printf("COLLAPSE,%" PRIi64 ",%" PRIi64 ",%d,%.2f,%d,%d\n", status_led_set_state(LED_STATE_CONNECTED);
ts.monotonic_ms, } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ts.gps_ms, status_led_set_state(LED_STATE_NO_CONFIG); // Or WAITING if retrying
ts.synced ? 1 : 0, }
nav_duration_us,
rssi,
retry);
} }
// --- Monitor Callbacks & Tasks --- // ... [Helper: Log Collapse Events (Same as before)] ...
static void log_collapse_event(float nav_duration_us, int rssi, int retry) {
gps_timestamp_t ts = gps_get_timestamp();
printf("COLLAPSE,%" PRIi64 ",%" PRIi64 ",%d,%.2f,%d,%d\n",
ts.monotonic_ms, ts.gps_ms, ts.synced ? 1 : 0, nav_duration_us, rssi, retry);
}
// ... [Monitor Callbacks (Same as before)] ...
static void monitor_frame_callback(const wifi_frame_info_t *frame, const uint8_t *payload, uint16_t len) { static void monitor_frame_callback(const wifi_frame_info_t *frame, const uint8_t *payload, uint16_t len) {
s_monitor_frame_count++; s_monitor_frame_count++;
// Check for Collapse conditions (High NAV + Retry)
if (frame->retry && frame->duration_id > 5000) { if (frame->retry && frame->duration_id > 5000) {
log_collapse_event((float)frame->duration_id, frame->rssi, frame->retry); log_collapse_event((float)frame->duration_id, frame->rssi, frame->retry);
} }
if (frame->duration_id > 30000) { if (frame->duration_id > 30000) {
ESP_LOGW("MONITOR", "⚠️ VERY HIGH NAV: %u us", frame->duration_id); ESP_LOGW("MONITOR", "⚠️ VERY HIGH NAV: %u us", frame->duration_id);
} }
@ -59,26 +62,19 @@ static void monitor_stats_task(void *arg) {
if (wifi_monitor_get_stats(&stats) == ESP_OK) { if (wifi_monitor_get_stats(&stats) == ESP_OK) {
ESP_LOGI("MONITOR", "--- Stats: %lu frames, Retry: %.2f%%, Avg NAV: %u us ---", ESP_LOGI("MONITOR", "--- Stats: %lu frames, Retry: %.2f%%, Avg NAV: %u us ---",
(unsigned long)stats.total_frames, stats.retry_rate, stats.avg_nav); (unsigned long)stats.total_frames, stats.retry_rate, stats.avg_nav);
if (wifi_monitor_is_collapsed()) ESP_LOGW("MONITOR", "⚠️ ⚠️ COLLAPSE DETECTED! ⚠️ ⚠️");
if (wifi_monitor_is_collapsed()) {
ESP_LOGW("MONITOR", "⚠️ ⚠️ COLLAPSE DETECTED! ⚠️ ⚠️");
}
} }
} }
} }
static void auto_monitor_task_func(void *arg) { static void auto_monitor_task_func(void *arg) {
uint8_t channel = (uint8_t)(uintptr_t)arg; uint8_t channel = (uint8_t)(uintptr_t)arg;
ESP_LOGI(TAG, "Waiting for WiFi connection before switching to monitor mode..."); ESP_LOGI(TAG, "Waiting for WiFi connection before switching to monitor mode...");
// Wait until LED indicates connected
while (status_led_get_state() != LED_STATE_CONNECTED) { while (status_led_get_state() != LED_STATE_CONNECTED) {
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
} }
ESP_LOGI(TAG, "WiFi connected, waiting for GPS sync (2s)..."); ESP_LOGI(TAG, "WiFi connected, waiting for GPS sync (2s)...");
vTaskDelay(pdMS_TO_TICKS(2000)); vTaskDelay(pdMS_TO_TICKS(2000));
ESP_LOGI(TAG, "Auto-switching to MONITOR mode on channel %d...", channel); ESP_LOGI(TAG, "Auto-switching to MONITOR mode on channel %d...", channel);
wifi_ctl_switch_to_monitor(channel, WIFI_BW_HT20); wifi_ctl_switch_to_monitor(channel, WIFI_BW_HT20);
vTaskDelete(NULL); vTaskDelete(NULL);
@ -90,15 +86,72 @@ void wifi_ctl_init(void) {
s_current_mode = WIFI_CTL_MODE_STA; s_current_mode = WIFI_CTL_MODE_STA;
s_monitor_enabled = false; s_monitor_enabled = false;
s_monitor_frame_count = 0; s_monitor_frame_count = 0;
// Register Event Handlers for LED feedback
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &wifi_event_handler, NULL, NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT, WIFI_EVENT_STA_DISCONNECTED, &wifi_event_handler, NULL, NULL));
if (!wifi_cfg_apply_from_nvs()) {
ESP_LOGW(TAG, "No saved WiFi config found, driver initialized in defaults.");
status_led_set_state(LED_STATE_NO_CONFIG);
} else {
ESP_LOGI(TAG, "WiFi driver initialized from NVS.");
status_led_set_state(LED_STATE_WAITING); // Waiting for connection
}
// Load Staging Params
char mode_ignored[16];
wifi_cfg_get_mode(mode_ignored, &s_monitor_channel_staging);
if (s_monitor_channel_staging == 0) s_monitor_channel_staging = 6;
} }
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth) { // --- Parameter Management ---
if (s_current_mode == WIFI_CTL_MODE_MONITOR) { void wifi_ctl_param_set_monitor_channel(uint8_t channel) {
if (channel >= 1 && channel <= 14) s_monitor_channel_staging = channel;
}
uint8_t wifi_ctl_param_get_monitor_channel(void) {
return s_monitor_channel_staging;
}
bool wifi_ctl_param_save(void) {
bool changed = wifi_cfg_set_monitor_channel(s_monitor_channel_staging);
if (changed) ESP_LOGI(TAG, "Monitor channel (%d) saved to NVS", s_monitor_channel_staging);
return changed;
}
void wifi_ctl_param_reload(void) {
char mode_ignored[16];
uint8_t ch = 0;
wifi_cfg_get_mode(mode_ignored, &ch);
if (ch > 0) s_monitor_channel_staging = ch;
ESP_LOGI(TAG, "Reloaded monitor channel: %d", s_monitor_channel_staging);
}
void wifi_ctl_param_clear(void) {
// 1. Erase NVS
wifi_cfg_clear_monitor_channel();
// 2. Reset RAM Staging to Default (6)
s_monitor_channel_staging = 6;
ESP_LOGI(TAG, "Monitor configuration cleared (Defaulting to Ch 6).");
}
bool wifi_ctl_param_is_unsaved(void) {
return wifi_cfg_monitor_channel_is_unsaved(s_monitor_channel_staging);
}
// --- Actions ---
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth) {
uint8_t channel = (channel_override > 0) ? channel_override : s_monitor_channel_staging;
if (s_current_mode == WIFI_CTL_MODE_MONITOR && s_monitor_channel == channel) {
ESP_LOGW(TAG, "Already in monitor mode"); ESP_LOGW(TAG, "Already in monitor mode");
return ESP_OK; return ESP_OK;
} }
// Monitor mode typically requires 20MHz
if (bandwidth != WIFI_BW_HT20) { if (bandwidth != WIFI_BW_HT20) {
ESP_LOGW(TAG, "Forcing bandwidth to 20MHz for monitor mode"); ESP_LOGW(TAG, "Forcing bandwidth to 20MHz for monitor mode");
bandwidth = WIFI_BW_HT20; bandwidth = WIFI_BW_HT20;
@ -106,22 +159,17 @@ esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth
ESP_LOGI(TAG, "Switching to MONITOR MODE (Ch %d)", channel); ESP_LOGI(TAG, "Switching to MONITOR MODE (Ch %d)", channel);
// 1. Stop high-level apps
iperf_stop(); iperf_stop();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 2. Disable CSI (hardware conflict)
// 2. GUARDED CALL
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
csi_mgr_disable(); csi_mgr_disable();
#endif #endif
// 3. Teardown Station
esp_wifi_disconnect(); esp_wifi_disconnect();
esp_wifi_stop(); esp_wifi_stop();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 4. Re-init in NULL/Promiscuous Mode
esp_wifi_set_mode(WIFI_MODE_NULL); esp_wifi_set_mode(WIFI_MODE_NULL);
if (wifi_monitor_init(channel, monitor_frame_callback) != ESP_OK) { if (wifi_monitor_init(channel, monitor_frame_callback) != ESP_OK) {
@ -136,7 +184,6 @@ esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth
return ESP_FAIL; return ESP_FAIL;
} }
// 5. Update State
s_monitor_enabled = true; s_monitor_enabled = true;
s_current_mode = WIFI_CTL_MODE_MONITOR; s_current_mode = WIFI_CTL_MODE_MONITOR;
s_monitor_channel = channel; s_monitor_channel = channel;
@ -157,34 +204,29 @@ esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode) {
ESP_LOGI(TAG, "Switching to STA MODE"); ESP_LOGI(TAG, "Switching to STA MODE");
// 1. Stop Monitor Tasks
if (s_monitor_stats_task_handle != NULL) { if (s_monitor_stats_task_handle != NULL) {
vTaskDelete(s_monitor_stats_task_handle); vTaskDelete(s_monitor_stats_task_handle);
s_monitor_stats_task_handle = NULL; s_monitor_stats_task_handle = NULL;
} }
// 2. Stop Monitor Driver
if (s_monitor_enabled) { if (s_monitor_enabled) {
wifi_monitor_stop(); wifi_monitor_stop();
s_monitor_enabled = false; s_monitor_enabled = false;
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
} }
// 3. Re-enable Station Mode
esp_wifi_set_mode(WIFI_MODE_STA); esp_wifi_set_mode(WIFI_MODE_STA);
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
// 4. Configure & Connect
wifi_config_t wifi_config; wifi_config_t wifi_config;
esp_wifi_get_config(WIFI_IF_STA, &wifi_config); esp_wifi_get_config(WIFI_IF_STA, &wifi_config);
wifi_config.sta.channel = 0; // Auto channel scan wifi_config.sta.channel = 0;
esp_wifi_set_config(WIFI_IF_STA, &wifi_config); esp_wifi_set_config(WIFI_IF_STA, &wifi_config);
esp_wifi_start(); esp_wifi_start();
vTaskDelay(pdMS_TO_TICKS(500)); vTaskDelay(pdMS_TO_TICKS(500));
esp_wifi_connect(); esp_wifi_connect();
// 5. Update State
s_current_mode = WIFI_CTL_MODE_STA; s_current_mode = WIFI_CTL_MODE_STA;
status_led_set_state(LED_STATE_WAITING); status_led_set_state(LED_STATE_WAITING);

View File

@ -2,6 +2,7 @@
#include "esp_err.h" #include "esp_err.h"
#include "esp_wifi.h" #include "esp_wifi.h"
#include <stdbool.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -12,44 +13,24 @@ typedef enum {
WIFI_CTL_MODE_MONITOR WIFI_CTL_MODE_MONITOR
} wifi_ctl_mode_t; } wifi_ctl_mode_t;
/**
* @brief Initialize the WiFi Controller
*/
void wifi_ctl_init(void); void wifi_ctl_init(void);
/** // --- Parameter Management ---
* @brief Switch operation mode to Monitor (Sniffer) void wifi_ctl_param_set_monitor_channel(uint8_t channel);
* @param channel WiFi channel (1-165) uint8_t wifi_ctl_param_get_monitor_channel(void);
* @param bandwidth Bandwidth (usually WIFI_BW_HT20 for monitor) bool wifi_ctl_param_save(void);
*/ void wifi_ctl_param_reload(void);
esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel, wifi_bandwidth_t bandwidth); bool wifi_ctl_param_is_unsaved(void);
void wifi_ctl_param_clear(void);
/** // --- Actions ---
* @brief Switch operation mode to Station (Client) esp_err_t wifi_ctl_switch_to_monitor(uint8_t channel_override, wifi_bandwidth_t bandwidth);
* @param band_mode Band preference (Auto, 2G only, 5G only)
*/
esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode); esp_err_t wifi_ctl_switch_to_sta(wifi_band_mode_t band_mode);
/**
* @brief Start the auto-monitor task
* Waits for connection, waits for GPS, then switches to monitor mode.
* @param channel Channel to monitor
*/
void wifi_ctl_auto_monitor_start(uint8_t channel); void wifi_ctl_auto_monitor_start(uint8_t channel);
/** // --- Getters ---
* @brief Get current operation mode
*/
wifi_ctl_mode_t wifi_ctl_get_mode(void); wifi_ctl_mode_t wifi_ctl_get_mode(void);
/**
* @brief Get the current monitor channel
*/
uint8_t wifi_ctl_get_monitor_channel(void); uint8_t wifi_ctl_get_monitor_channel(void);
/**
* @brief Get total frames captured in monitor mode
*/
uint32_t wifi_ctl_get_monitor_frame_count(void); uint32_t wifi_ctl_get_monitor_frame_count(void);
#ifdef __cplusplus #ifdef __cplusplus

View File

@ -12,6 +12,8 @@ import logging
import glob import glob
import random import random
from pathlib import Path from pathlib import Path
from serial.tools import list_ports
import subprocess
# Ensure detection script is available # Ensure detection script is available
sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__)))
@ -56,13 +58,35 @@ def generate_config_suffix(target, csi, ampdu):
return f"{target}_{csi_str}_{ampdu_str}" return f"{target}_{csi_str}_{ampdu_str}"
def auto_detect_devices(): def auto_detect_devices():
"""Prioritizes static udev paths (/dev/esp_port_XX) if they exist.""" """Prioritizes static udev paths (/dev/esp_port_XX) and removes duplicates."""
try: try:
ports = glob.glob('/dev/esp_port_*') ports = glob.glob('/dev/esp_port_*')
if ports: if ports:
# --- New Deduplication Logic ---
unique_map = {}
for p in ports:
try:
# Resolve symlink (e.g., /dev/esp_port_01 -> /dev/ttyUSB0)
real_path = os.path.realpath(p)
if real_path not in unique_map:
unique_map[real_path] = p
else:
# Conflict! We have both esp_port_1 and esp_port_01.
# Keep the "shorter" one (esp_port_1) to match your new scheme.
current_alias = unique_map[real_path]
if len(p) < len(current_alias):
unique_map[real_path] = p
except OSError:
continue
# Use the filtered list
ports = list(unique_map.values())
# -------------------------------
# Sort by suffix number # Sort by suffix number
ports.sort(key=lambda x: int(re.search(r'(\d+)$', x).group(1)) if re.search(r'(\d+)$', x) else 0) ports.sort(key=lambda x: int(re.search(r'(\d+)$', x).group(1)) if re.search(r'(\d+)$', x) else 0)
print(f"{Colors.CYAN}Auto-detected {len(ports)} devices using static udev rules.{Colors.RESET}") print(f"{Colors.CYAN}Auto-detected {len(ports)} devices (filtered from {len(unique_map) + (len(glob.glob('/dev/esp_port_*')) - len(unique_map))} aliases).{Colors.RESET}")
return [type('obj', (object,), {'device': p}) for p in ports] return [type('obj', (object,), {'device': p}) for p in ports]
except Exception: except Exception:
pass pass
@ -344,6 +368,81 @@ class UnifiedDeployWorker:
self.log.error(f"Flash Prep Error: {e}") self.log.error(f"Flash Prep Error: {e}")
return False return False
def update_udev_map(dry_run=False):
"""
Scans all USB serial devices, sorts them by physical topology (Bus/Port),
and generates a udev rule file to map them to /dev/esp_port_XX.
"""
print(f"{Colors.BLUE}Scanning USB topology to generate stable port maps...{Colors.RESET}")
# Get all USB serial devices
devices = list(list_ports.grep("USB|ACM|CP210|FT232"))
if not devices:
print(f"{Colors.RED}No devices found.{Colors.RESET}")
return
# Sort by "location" (Physical USB path: e.g., 1-1.2.3)
# This guarantees esp_port_01 is always the first physical port.
devices.sort(key=lambda x: x.location if x.location else x.device)
generated_rules = []
print(f"{'Physical Path':<20} | {'Current Dev':<15} | {'Assigned Symlink'}")
print("-" * 65)
for i, dev in enumerate(devices):
port_num = i + 1
symlink = f"esp_port_{port_num}" # e.g., esp_port_1
# Get detailed udev info to find the stable physical path ID
try:
cmd = ['udevadm', 'info', '--name', dev.device, '--query=property']
proc = subprocess.run(cmd, capture_output=True, text=True)
props = dict(line.split('=', 1) for line in proc.stdout.splitlines() if '=' in line)
# ID_PATH is the robust physical identifier (e.g., pci-0000:00:14.0-usb-0:1.4.3:1.0)
dev_path = props.get('ID_PATH', '')
if not dev_path:
print(f"{Colors.YELLOW}Skipping {dev.device} (No ID_PATH found){Colors.RESET}")
continue
# Generate the rule
rule = f'SUBSYSTEM=="tty", ENV{{ID_PATH}}=="{dev_path}", SYMLINK+="{symlink}"'
generated_rules.append(rule)
print(f"{dev.location:<20} | {dev.device:<15} | {symlink}")
except Exception as e:
print(f"Error inspecting {dev.device}: {e}")
print("-" * 65)
rules_content = "# Auto-generated by esp32_deploy.py\n" + "\n".join(generated_rules) + "\n"
rule_file = "/etc/udev/rules.d/99-esp32-stable.rules"
if dry_run:
print(f"\n{Colors.YELLOW}--- DRY RUN: Rules that would be written to {rule_file} ---{Colors.RESET}")
print(rules_content)
else:
if os.geteuid() != 0:
print(f"\n{Colors.RED}ERROR: Root privileges required to write udev rules.{Colors.RESET}")
print(f"Run: sudo ./esp32_deploy.py --map-ports")
return
print(f"\nWriting rules to {rule_file}...")
try:
with open(rule_file, 'w') as f:
f.write(rules_content)
print("Reloading udev rules...")
subprocess.run(['udevadm', 'control', '--reload-rules'], check=True)
subprocess.run(['udevadm', 'trigger'], check=True)
print(f"{Colors.GREEN}Success! Devices re-mapped.{Colors.RESET}")
except Exception as e:
print(f"{Colors.RED}Failed to write rules: {e}{Colors.RESET}")
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description='ESP32 Unified Deployment Tool') parser = argparse.ArgumentParser(description='ESP32 Unified Deployment Tool')
parser.add_argument('-i', '--interactive', action='store_true', help='Prompt for build options') parser.add_argument('-i', '--interactive', action='store_true', help='Prompt for build options')
@ -380,8 +479,9 @@ def parse_args():
parser.add_argument('-M', '--mode', default='STA') parser.add_argument('-M', '--mode', default='STA')
parser.add_argument('-mc', '--monitor-channel', type=int, default=36) parser.add_argument('-mc', '--monitor-channel', type=int, default=36)
parser.add_argument('--csi', dest='csi_enable', action='store_true') parser.add_argument('--csi', dest='csi_enable', action='store_true')
parser.add_argument('--map-ports', action='store_true', help="Rescan USB topology and generate udev rules for esp_port_xx")
args = parser.parse_args() args = parser.parse_args()
if args.target != 'all' and not args.start_ip and not args.check_version: if args.target != 'all' and not args.start_ip and not args.check_version and not args.map_ports:
parser.error("the following arguments are required: --start-ip") parser.error("the following arguments are required: --start-ip")
if args.config_only and args.flash_only: parser.error("Conflicting modes") if args.config_only and args.flash_only: parser.error("Conflicting modes")
return args return args
@ -553,9 +653,22 @@ async def run_deployment(args):
print(f"\n{Colors.BLUE}Summary: {success}/{len(devs)} Success{Colors.RESET}") print(f"\n{Colors.BLUE}Summary: {success}/{len(devs)} Success{Colors.RESET}")
def main(): def main():
if os.name == 'nt': asyncio.set_event_loop(asyncio.ProactorEventLoop()) args = parse_args()
try: asyncio.run(run_deployment(parse_args()))
except KeyboardInterrupt: sys.exit(1) # --- INTERCEPT --map-ports HERE ---
if args.map_ports:
# Run synchronously, no async loop needed
update_udev_map(dry_run=False)
sys.exit(0)
# Standard async deployment flow
if os.name == 'nt':
asyncio.set_event_loop(asyncio.ProactorEventLoop())
try:
asyncio.run(run_deployment(args))
except KeyboardInterrupt:
sys.exit(1)
if __name__ == '__main__': if __name__ == '__main__':
main() main()

View File

@ -2,44 +2,47 @@
#define BOARD_CONFIG_H #define BOARD_CONFIG_H
#include "sdkconfig.h" #include "sdkconfig.h"
#include "driver/gpio.h"
#if defined (CONFIG_IDF_TARGET_ESP32C5)
// ============================================================================ // ============================================================================
// ESP32-C5 (DevKitC-1) // ESP32-C5 (DevKitC-1) 3.3V VCC Pin 1 GND PIN 15
// ============================================================================ // ============================================================================
#ifdef CONFIG_IDF_TARGET_ESP32C5
#define RGB_LED_GPIO 8 // Common addressable LED pin for C5 #define RGB_LED_GPIO 8 // Common addressable LED pin for C5
#define HAS_RGB_LED 1 #define HAS_RGB_LED 1
#endif #define GPS_TX_PIN GPIO_NUM_24
#define GPS_RX_PIN GPIO_NUM_23
#define GPS_PPS_PIN GPIO_NUM_25
#elif defined (CONFIG_IDF_TARGET_ESP32S3)
// ============================================================================ // ============================================================================
// ESP32-S3 (DevKitC-1) // ESP32-S3 (DevKitC-1)
// Most S3 DevKits use GPIO 48 for the addressable RGB LED.
// If yours uses GPIO 38, change this value.
// ============================================================================ // ============================================================================
#ifdef CONFIG_IDF_TARGET_ESP32S3
// Most S3 DevKits use GPIO 48 for the addressable RGB LED.
// If yours uses GPIO 38, change this value.
#define RGB_LED_GPIO 48 #define RGB_LED_GPIO 48
#define HAS_RGB_LED 1 #define HAS_RGB_LED 1
#endif #define GPS_TX_PIN GPIO_NUM_5
#define GPS_RX_PIN GPIO_NUM_4
#define GPS_PPS_PIN GPIO_NUM_6
#elif defined (CONFIG_IDF_TARGET_ESP32)
// ============================================================================ // ============================================================================
// ESP32 (Original / Standard) // ESP32 (Original / Standard)
// Standard ESP32 DevKits usually have a single blue LED on GPIO 2.
// They rarely have an addressable RGB LED built-in.
// ============================================================================ // ============================================================================
#ifdef CONFIG_IDF_TARGET_ESP32 #define RGB_LED_GPIO 2 // Standard Blue LED
// Standard ESP32 DevKits usually have a single blue LED on GPIO 2. #define HAS_RGB_LED 0 // Not RGB
// They rarely have an addressable RGB LED built-in. #define GPS_TX_PIN GPIO_NUM_17
#define RGB_LED_GPIO 2 #define GPS_RX_PIN GPIO_NUM_16
#define HAS_RGB_LED 0 #define GPS_PPS_PIN GPIO_NUM_4
#endif #else
// Fallback
// ============================================================================ #define RGB_LED_GPIO 8
// Fallbacks (Prevent Compilation Errors) #define HAS_RGB_LED 1
// ============================================================================ #define GPS_TX_PIN GPIO_NUM_1
#ifndef RGB_LED_GPIO #define GPS_RX_PIN GPIO_NUM_3
#define RGB_LED_GPIO 2 #define GPS_PPS_PIN GPIO_NUM_5
#endif
#ifndef HAS_RGB_LED
#define HAS_RGB_LED 0
#endif #endif
#endif // BOARD_CONFIG_H #endif // BOARD_CONFIG_H

View File

@ -15,9 +15,11 @@
// Components // Components
#include "status_led.h" #include "status_led.h"
#include "board_config.h" #include "board_config.h"
#include "gps_sync.h"
#include "wifi_controller.h" #include "wifi_controller.h"
#include "wifi_cfg.h" #include "wifi_cfg.h"
#include "app_console.h" #include "app_console.h"
#include "iperf.h"
#ifdef CONFIG_ESP_WIFI_CSI_ENABLED #ifdef CONFIG_ESP_WIFI_CSI_ENABLED
#include "csi_log.h" #include "csi_log.h"
@ -28,6 +30,25 @@
static const char *TAG = "MAIN"; static const char *TAG = "MAIN";
// --- Global Prompt Buffer (Mutable) ---
static char s_cli_prompt[32] = "esp32> ";
// --- Prompt Updater ---
// This is called by app_console.c commands whenever a setting is changed.
void app_console_update_prompt(void) {
bool dirty = false;
// Check if any component has unsaved changes (RAM != NVS)
if (wifi_ctl_param_is_unsaved()) dirty = true;
if (iperf_param_is_unsaved()) dirty = true;
if (dirty) {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32*> ");
} else {
snprintf(s_cli_prompt, sizeof(s_cli_prompt), "esp32> ");
}
}
// --- System Commands --- // --- System Commands ---
static int cmd_restart(int argc, char **argv) { static int cmd_restart(int argc, char **argv) {
@ -72,6 +93,13 @@ void app_main(void) {
// 2. Initialize Netif & Event Loop // 2. Initialize Netif & Event Loop
ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(esp_event_loop_create_default());
const gps_sync_config_t gps_cfg = {
.uart_port = UART_NUM_1,
.tx_pin = GPS_TX_PIN,
.rx_pin = GPS_RX_PIN,
.pps_pin = GPS_PPS_PIN,
};
gps_sync_init(&gps_cfg, true);
// 3. Hardware Init // 3. Hardware Init
status_led_init(RGB_LED_GPIO, HAS_RGB_LED); status_led_init(RGB_LED_GPIO, HAS_RGB_LED);
@ -80,15 +108,18 @@ void app_main(void) {
csi_mgr_init(); csi_mgr_init();
#endif #endif
// 4. Initialize WiFi Controller (Loads config from NVS automatically) // 4. Initialize WiFi Controller & iPerf
wifi_ctl_init(); wifi_ctl_init();
iperf_param_init();
// 5. Initialize Console // 5. Initialize Console
esp_console_repl_t *repl = NULL; esp_console_repl_t *repl = NULL;
esp_console_repl_config_t repl_config = ESP_CONSOLE_REPL_CONFIG_DEFAULT(); esp_console_repl_config_t repl_config = ESP_CONSOLE_REPL_CONFIG_DEFAULT();
// This prompt is the anchor for your Python script // ---------------------------------------------------------
repl_config.prompt = "esp32> "; // CRITICAL FIX: Use the mutable buffer, NOT a string literal
// ---------------------------------------------------------
repl_config.prompt = s_cli_prompt;
repl_config.max_cmdline_length = 1024; repl_config.max_cmdline_length = 1024;
// Install UART driver for Console (Standard IO) // Install UART driver for Console (Standard IO)
@ -99,12 +130,14 @@ void app_main(void) {
register_system_common(); register_system_common();
app_console_register_commands(); app_console_register_commands();
// 7. Start Shell // 7. Initial Prompt State Check
app_console_update_prompt();
// 8. Start Shell
printf("\n ==================================================\n"); printf("\n ==================================================\n");
printf(" | ESP32 iPerf Shell - Ready |\n"); printf(" | ESP32 iPerf Shell - Ready |\n");
printf(" | Type 'help' for commands |\n"); printf(" | Type 'help' for commands |\n");
printf(" ==================================================\n"); printf(" ==================================================\n");
// This function runs the REPL loop and does not return
ESP_ERROR_CHECK(esp_console_start_repl(repl)); ESP_ERROR_CHECK(esp_console_start_repl(repl));
} }